cxx_api_test.cc 3.1 KB
Newer Older
S
superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/api/cxx_api.h"
16
#include <gflags/gflags.h>
S
superjomn 已提交
17
#include <gtest/gtest.h>
S
superjomn 已提交
18
#include <vector>
19
#include "paddle/fluid/lite/core/mir/passes.h"
S
superjomn 已提交
20 21
#include "paddle/fluid/lite/core/op_registry.h"

22
DEFINE_string(model_dir, "", "");
S
superjomn 已提交
23
DEFINE_string(optimized_model, "", "");
24

S
superjomn 已提交
25 26 27
namespace paddle {
namespace lite {

S
superjomn 已提交
28
TEST(CXXApi, test) {
S
superjomn 已提交
29
  lite::CXXPredictor predictor;
S
superjomn 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42
#ifndef LITE_WITH_CUDA
  std::vector<Place> valid_places({Place{TARGET(kHost), PRECISION(kFloat)}});
#else
  std::vector<Place> valid_places({
      Place{TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW)},
      Place{TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kNCHW)},
      Place{TARGET(kCUDA), PRECISION(kAny), DATALAYOUT(kNCHW)},
      Place{TARGET(kHost), PRECISION(kAny), DATALAYOUT(kNCHW)},
      Place{TARGET(kCUDA), PRECISION(kAny), DATALAYOUT(kAny)},
      Place{TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny)},
  });
#endif

43 44
  predictor.Build(FLAGS_model_dir, Place{TARGET(kCUDA), PRECISION(kFloat)},
                  valid_places);
45 46

  auto* input_tensor = predictor.GetInput(0);
47 48
  input_tensor->Resize(DDim(std::vector<DDim::value_type>({100, 100})));
  auto* data = input_tensor->mutable_data<float>();
49 50 51 52
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

S
superjomn 已提交
53
  // LOG(INFO) << "input " << *input_tensor;
54

55
  predictor.Run();
56 57

  auto* out = predictor.GetOutput(0);
58
  LOG(INFO) << out << " memory size " << out->data_size();
59 60 61
  LOG(INFO) << "out " << out->data<float>()[0];
  LOG(INFO) << "out " << out->data<float>()[1];
  LOG(INFO) << "dims " << out->dims();
S
superjomn 已提交
62
  // LOG(INFO) << "out " << *out;
S
superjomn 已提交
63 64
}

65
#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
S
Superjomn 已提交
66
TEST(CXXApi, save_model) {
S
superjomn 已提交
67
  lite::CXXPredictor predictor;
S
Superjomn 已提交
68
  std::vector<Place> valid_places({Place{TARGET(kHost), PRECISION(kFloat)}});
69 70
  predictor.Build(FLAGS_model_dir, Place{TARGET(kCUDA), PRECISION(kFloat)},
                  valid_places);
S
Superjomn 已提交
71

S
superjomn 已提交
72
  predictor.SaveModel(FLAGS_optimized_model);
S
Superjomn 已提交
73
}
74
#endif
S
Superjomn 已提交
75

S
superjomn 已提交
76 77 78 79 80 81
}  // namespace lite
}  // namespace paddle

USE_LITE_OP(mul);
USE_LITE_OP(fc);
USE_LITE_OP(scale);
82 83
USE_LITE_OP(feed);
USE_LITE_OP(fetch);
S
superjomn 已提交
84 85 86 87 88 89 90 91 92 93 94 95
USE_LITE_OP(io_copy);
USE_LITE_KERNEL(fc, kHost, kFloat, kNCHW, def);
USE_LITE_KERNEL(mul, kHost, kFloat, kNCHW, def);
USE_LITE_KERNEL(scale, kHost, kFloat, kNCHW, def);
USE_LITE_KERNEL(feed, kHost, kAny, kAny, def);
USE_LITE_KERNEL(fetch, kHost, kAny, kAny, def);

#ifdef LITE_WITH_CUDA
USE_LITE_KERNEL(mul, kCUDA, kFloat, kNCHW, def);
USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, host_to_device);
USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, device_to_host);
#endif