distribute_transpiler.py 100.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
133 134 135 136
    A configuration class that provide support for distributed jobs.
    Some important parameters are explained as follows:


H
haowang101779990 已提交
137 138
    .. py:attribute:: slice_var_up (bool)

139
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
140 141 142

    .. py:attribute:: split_method (PSDispatcher)

143 144 145 146
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
147 148 149

    .. py:attribute:: min_block_size (int)

150
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
151 152

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
153
          We can use bandwidth effiently when data size is larger than 2MB.If you
154 155 156 157
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
158

159 160 161
    Examples:
        .. code-block:: python

162 163 164
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

165 166
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
167 168
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
169 170 171 172 173
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
174
    enable_dc_asgd = False
175
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
176
    mode = "pserver"
177
    print_log = False
W
Wu Yi 已提交
178
    wait_port = True
Q
Qiao Longfei 已提交
179
    # split the send recv var in runtime
180 181
    _runtime_split_send_recv = False
    _sync_mode = True
G
gongweibao 已提交
182

183 184 185 186
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

187 188 189 190 191 192 193
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

194
    # if mode is collective
195
    # supported modes: grad_allreduce, local_sgd
196 197
    collective_mode = None

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
        return self._runtime_split_send_recv

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
        if value and self._sync_mode:
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
        self._runtime_split_send_recv = value

    @property
    def sync_mode(self):
        return self._sync_mode

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
        if value and self._runtime_split_send_recv:
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
        self._sync_mode = value

G
gongweibao 已提交
229

Y
gen rst  
yi.wu 已提交
230
class DistributeTranspiler(object):
Y
yi.wu 已提交
231 232 233 234
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
235
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
236

W
Wu Yi 已提交
237 238 239 240 241 242 243 244 245
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
246 247 248 249

    Examples:
        .. code-block:: python

250 251 252 253 254 255 256 257 258 259
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
260 261 262 263 264 265
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
266
            role = "PSERVER"
T
Tink_Y 已提交
267 268 269 270 271 272
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
273
                                                                pserver_program)
T
Tink_Y 已提交
274 275 276 277
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
278 279
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
280 281
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
282
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
283
            t = fluid.DistributeTranspiler(config=config)
284
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
285
            exe = fluid.ParallelExecutor(
286 287 288
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
289 290
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
291
    """
Y
Yancey1989 已提交
292

G
gongweibao 已提交
293 294 295 296 297 298 299 300 301
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

302 303 304
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
305 306 307
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
308 309 310 311
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
312 313
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
314 315 316 317 318 319
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
320 321
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
322 323 324

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
325 326 327 328 329 330 331 332 333

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
334 335 336 337
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
338 339 340 341 342
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
343 344 345 346 347
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
348 349 350 351 352 353 354
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
355 356 357 358 359
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
        else:
            raise ValueError('invalid trainers config: ' + str(trainers))

        if len(endpoints) == 1:
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
386
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
387
        elif collective_mode == 'local_sgd':
388
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
389 390 391 392 393 394 395 396 397 398 399
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
400
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
401
        sparse_update_ops = []
402
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
403 404
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
405
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
406 407 408
                sparse_update_ops.append(op)
        return sparse_update_ops

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
484

485 486
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
487 488 489 490 491 492

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
493

494 495 496 497 498
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
499
                  sync_mode=True,
W
Wu Yi 已提交
500 501
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
502
        """
503
        Run the transpiler. Transpile the input program.
Y
yi.wu 已提交
504 505 506 507 508 509

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
510 511
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
512 513
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
514 515 516
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
517
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
518 519
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
520 521 522
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
523 524 525 526 527 528 529 530 531 532 533

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
534 535 536
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
537 538
        if startup_program is None:
            startup_program = default_startup_program()
539
        self.origin_program = program
W
Wu Yi 已提交
540 541
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
542

W
Wu Yi 已提交
543 544
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
545
            self.origin_program._trainers_endpoints = trainers.split(",")
546 547
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
548 549 550 551 552
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
553
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
554 555 556 557 558 559 560 561 562 563 564
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
565 566 567 568
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
569 570
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
571 572
            return

573 574 575 576 577 578 579 580 581 582 583
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

584
        self.trainer_num = trainers
585
        self.sync_mode = sync_mode
586 587 588
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
589
        self.vars_overview = VarsDistributed()
590 591
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
592
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
593 594
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
595
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
596
        self.grad_name_to_param_name = dict()
597 598
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
599
            self.grad_name_to_param_name[grad_var.name] = param_var.name
600

Q
Qiao Longfei 已提交
601
        # get all sparse update ops
Q
Qiao Longfei 已提交
602
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
603
            self.origin_program)
Q
Qiao Longfei 已提交
604
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
605 606
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
607 608 609
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
610
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
611 612 613
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

614
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
615
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
616
        self._init_splited_vars()
617

G
gongweibao 已提交
618
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
619
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
620
        send_vars = []
621 622 623 624 625 626

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
627
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
628

G
gongweibao 已提交
629
        if not self.config.slice_var_up:
630 631
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
632

633
        self.grad_name_to_send_dummy_out = dict()
634
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
635
            eplist = ps_dispatcher.dispatch(splited_vars)
636

G
gongweibao 已提交
637
            if not self.config.slice_var_up:
638 639
                assert (len(splited_vars) == 1)

640
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
641
            if len(splited_vars) == 1:
642
                splited_grad_varname = splited_vars[0].name
643 644
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
645

Y
Yancey1989 已提交
646
            elif len(splited_vars) > 1:
647
                orig_var = program.global_block().vars[splited_grad_varname]
648 649
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
650

Q
Qiao Longfei 已提交
651 652 653 654
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
655 656
            else:
                AssertionError("Can not insert the send op by original "
657
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
658

659 660 661 662 663 664 665
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
666 667
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
668
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
669

Q
Qiao Longfei 已提交
670 671 672 673 674 675 676 677 678 679 680
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
681 682 683 684
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
685
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
686
                index=index + 1,
687
                type="send",
Q
Qiao Longfei 已提交
688
                inputs={"X": send_input_vars},
689
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
690 691
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
692 693
                    "sections": sections,
                    "send_varnames": send_varnames,
694
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
695 696 697
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
698
                    ]
Y
Yancey1989 已提交
699
                })
Y
update  
Yancey1989 已提交
700 701
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
702 703

        if self.sync_mode:
W
Wu Yi 已提交
704 705
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
706 707 708 709
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
710
            input_deps = list(self.grad_name_to_send_dummy_out.values())
711

Y
Yancey1989 已提交
712 713
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
714
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
715
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
716 717
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
718
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
719
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
720
                })
Y
Yancey1989 已提交
721

G
gongweibao 已提交
722
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
723
        recv_vars = []
Y
update  
Yancey1989 已提交
724
        for _, var in enumerate(send_vars):
725
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
726
        ps_dispatcher.reset()
Y
Yancey1989 已提交
727 728
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
729
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
730 731
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
732

733 734 735 736
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

737 738
        need_sparse_update_params = {}

Y
Yancey1989 已提交
739
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
740
        all_recv_outputs = []
741
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
742
            eps = []
Q
Qiao Longfei 已提交
743
            table_names = []
Y
Yancey1989 已提交
744 745 746
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
747
                table_names.append(var.name)
W
Wu Yi 已提交
748 749 750 751
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
752
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
753
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
754

W
Wu Yi 已提交
755 756 757 758 759 760 761 762 763
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
764
            if param_varname in self.sparse_param_to_height_sections:
765 766 767 768 769
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

770
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
771
            else:
Q
Qiao Longfei 已提交
772 773 774
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
775
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
776
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
777
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
778

Q
Qiao Longfei 已提交
779 780 781 782 783 784
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
785
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
786 787 788
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
789
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
790
                    })
T
typhoonzero 已提交
791

Q
qiaolongfei 已提交
792
        if self.sync_mode:
W
Wu Yi 已提交
793
            # form a WAW dependency
Q
qiaolongfei 已提交
794 795 796
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
797
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
798 799
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
800
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
801 802
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
803

804
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
805 806
            if len(splited_var) <= 1:
                continue
807
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
808
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
809 810 811 812 813 814 815 816 817
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
818

819 820 821
            self._update_remote_sparse_update_op(program,
                                                 need_sparse_update_params)

G
gongweibao 已提交
822 823
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

824
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
825 826
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
827
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
828

829 830 831
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
832
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
833 834 835 836 837
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
838 839 840 841 842 843 844 845 846 847 848 849

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
850
        """
T
typhoonzero 已提交
851
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
852
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
853

T
typhoonzero 已提交
854
        lr_ops = self._get_lr_ops()
855
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
856 857
        delete_ops(self.origin_program.global_block(), lr_ops)

858 859
        # delete table init op
        if self.has_distributed_lookup_table:
860 861 862
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
863 864
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
865 866 867 868 869
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
870
            table_init_op = table_param_init_op[0]
871 872 873 874 875 876
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
877

878
        self.origin_program.__str__()
G
gongweibao 已提交
879

W
Wu Yi 已提交
880 881 882
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

883
        return self.origin_program
T
typhoonzero 已提交
884

W
Wu Yi 已提交
885
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
886 887 888 889
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
890
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
891
            eplist (list): A list of strings indicating
G
gongweibao 已提交
892 893 894 895

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
896
        startup_program = self.startup_program
G
gongweibao 已提交
897 898 899 900

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
901
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
922
                inputs={"X": []},
G
gongweibao 已提交
923 924 925
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
926
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
927 928 929
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
930 931
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
932 933 934
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
935
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
936 937
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
938
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
939 940 941
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
942
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
943
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
944 945
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
946
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
947
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
948 949 950 951 952 953 954 955 956 957
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
958 959 960 961 962 963 964 965
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
966 967
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
968
        Get parameter server side program.
969

Y
yi.wu 已提交
970 971
        Args:
            endpoint (str): current parameter server endpoint.
972

Y
yi.wu 已提交
973 974
        Returns:
            Program: the program for current parameter server to run.
975 976 977 978 979 980 981 982 983 984 985 986 987 988

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
989
        """
Y
yi.wu 已提交
990 991 992 993
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
994 995 996
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
997 998
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
999
        pserver_program.random_seed = self.origin_program.random_seed
1000 1001
        pserver_program._copy_dist_param_info_from(self.origin_program)

1002
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1003 1004 1005 1006 1007 1008 1009 1010
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1011 1012 1013 1014 1015
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1025
            if self.sync_mode and self.trainer_num > 1:
1026
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1036

Q
qiaolongfei 已提交
1037
        # step 3
1038
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1039 1040 1041
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1042
        # step 3.2
T
typhoonzero 已提交
1043 1044 1045 1046
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1047 1048
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1049
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1050
        # step 3.3
W
Wu Yi 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1069
        # Iterate through the ops, and if an op and the optimize ops
1070
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1071
        # append it into the sub program.
T
typhoonzero 已提交
1072 1073 1074

        global_ops = []

1075 1076 1077
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1078 1079
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1080
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1081
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1082 1083
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1084
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1085
                self._append_pserver_non_opt_ops(block, op)
1086

Y
Yancey1989 已提交
1087
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1088 1089 1090 1091 1092 1093 1094 1095
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1096
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1097 1098 1099

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1100
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1101 1102

            # clone ops
Y
Yancey1989 已提交
1103 1104
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1105
                # clone sub_block of op
Y
Yancey1989 已提交
1106
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1107 1108

            # reset the block of op
W
Wu Yi 已提交
1109
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1110

1111
        # append lr decay ops to the child block if exists
1112
        lr_ops = self._get_lr_ops()
1113 1114
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1115
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1116
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1117
                pserver_program.num_blocks - 1)
1118
            optimize_blocks.append(lr_decay_block)
1119
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1120
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1121
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1122 1123
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1124

T
typhoonzero 已提交
1125
        # append op to the current block
Q
qiaolongfei 已提交
1126
        grad_to_block_id = []
Q
qiaolongfei 已提交
1127
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1128
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1129
            per_opt_block = pserver_program._create_block(pre_block_idx)
1130
            optimize_blocks.append(per_opt_block)
1131
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1132
            # append grad merging ops before clip and weight decay
1133 1134
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1135
            for _, op in enumerate(self.optimize_ops):
1136
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1137
                # merged_var should be the input var name of L2Decay
1138 1139 1140
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1141 1142 1143
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1144 1145 1146 1147 1148 1149
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1150
                            op not in global_ops:
1151 1152 1153 1154 1155
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1156

1157
        # dedup grad to ids list
W
Wu Yi 已提交
1158
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1159
        # append global ops
1160
        if global_ops:
W
Wu Yi 已提交
1161
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1162
                pserver_program.num_blocks - 1)
1163
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1164
            for glb_op in global_ops:
X
Xi Chen 已提交
1165
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1166
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1167

1168
        # process distributed lookup_table
Q
qiaolongfei 已提交
1169
        prefetch_var_name_to_block_id = []
1170 1171
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1172
            table_opt_block = self._create_table_optimize_block(
1173
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1174
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1175
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1176
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1177 1178
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1179

T
tangwei12 已提交
1180
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1181 1182
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1183

1184
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1185 1186
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1187 1188 1189 1190 1191 1192
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1193
        attrs = {
1194
            "optimize_blocks": optimize_blocks,
1195 1196 1197
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1198
            "grad_to_block_id": grad_to_block_id,
1199
            "sparse_grad_to_param": sparse_grad_to_param,
1200
        }
T
tangwei12 已提交
1201 1202

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1203
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1204 1205
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1206

T
tangwei12 已提交
1207 1208 1209 1210
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1211 1212 1213 1214 1215
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1216
            attrs=attrs)
1217

W
Wu Yi 已提交
1218
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1219 1220
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1221 1222
        return pserver_program

W
Wu Yi 已提交
1223 1224 1225 1226 1227 1228
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1229

W
Wu Yi 已提交
1230 1231
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1246 1247
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1248 1249
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1250 1251
        return pserver_prog, pserver_startup

1252 1253
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1254
                            pserver_program=None,
1255
                            startup_program=None):
T
typhoonzero 已提交
1256
        """
W
Wu Yi 已提交
1257 1258
        **Deprecated**

T
typhoonzero 已提交
1259 1260 1261
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1262 1263 1264

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1265 1266
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1267
                when initalizing
1268

Y
yi.wu 已提交
1269 1270
        Returns:
            Program: parameter server side startup program.
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1286 1287
        """
        s_prog = Program()
W
Wu Yi 已提交
1288
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1289
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1301
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1302
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1303
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1304 1305 1306 1307
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1308
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1309 1310
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1321 1322

            if op_on_pserver:
1323 1324 1325
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1326
                if op.type in [
1327 1328
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1329
                ]:
W
Wu Yi 已提交
1330
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1331 1332 1333 1334
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1335
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1345

T
typhoonzero 已提交
1346 1347
        return s_prog

1348 1349
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1350
        block_suffix = "block"
1351 1352 1353
        block_idx = 0
        offset = 0
        is_slice = False
1354

1355
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1356

1357 1358
        if not block_name:
            return is_slice, block_idx, offset
1359

1360 1361 1362 1363
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1364 1365 1366 1367 1368
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1432

Y
yi.wu 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1472
    def _init_splited_vars(self):
Y
yi.wu 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1496
        if self.config.slice_var_up:
Y
yi.wu 已提交
1497 1498
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1499 1500 1501
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1502
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1503 1504
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1505 1506 1507
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1508 1509 1510 1511
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1512 1513
        assert (len(grad_blocks) == len(param_blocks))

1514
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1515 1516
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1533
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1534 1535 1536 1537
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1538
        # dict(grad_splited_var -> param_splited_var)
1539
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1540 1541 1542
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1543
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1544
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1545 1546

        # create mapping of endpoint -> split var to create pserver side program
1547
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1557
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1558 1559
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1560
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1561
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1562 1563
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1564 1565
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1566 1567 1568 1569 1570 1571

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1572 1573
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1574
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1575 1576 1577
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1578 1579
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1580 1581
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1582 1583 1584
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1585
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1586
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1587 1588

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1589
                    self.all_out_emb_vars.append(out_var)
1590 1591

                    # delete lookup_table_op
1592
                    delete_ops(program.global_block(), [op])
1593 1594 1595
                    # break for loop
                    break

S
seiriosPlus 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1642
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1643
        # 2. add split_ids_op and send_op to send gradient to pservers
1644

1645 1646
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1647
        table_grad_name = grad_var_name(self.table_name)
1648 1649 1650 1651
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1652
                program.global_block()._insert_op(
1653 1654 1655 1656 1657
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1658 1659
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1660
                program.global_block()._insert_op(
1661
                    index=op_index + 2,
1662
                    type="send",
1663
                    inputs={'X': self.trainer_side_table_grad_list},
1664 1665 1666 1667 1668
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1669 1670
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1671
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1672 1673 1674 1675 1676
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1677
                    })
1678 1679 1680 1681 1682 1683
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1684
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1710
        return prefetch_var_name_to_block_id
1711 1712

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1713
                                     pre_block_idx, grad_to_block_id):
1714
        # STEP: create table optimize block
1715
        table_opt_block = pserver_program._create_block(pre_block_idx)
1716
        # create table param and grad var in pserver program
1717 1718
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1719 1720 1721
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1722 1723
        ][0]

Y
Yancey1989 已提交
1724 1725
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1726

T
tangwei12 已提交
1727
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1728 1729
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1730 1731 1732
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1733 1734
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1735
            shape=table_shape,
Y
Yancey1989 已提交
1736 1737 1738
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1739

1740 1741
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1742
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1743
            self.origin_program.global_block().vars[grad_var_name(
1744
                self.table_name)])
1745

1746 1747 1748
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1749

1750 1751 1752
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1753
            pserver_side_table_grad_list = [
1754 1755 1756 1757 1758 1759 1760 1761 1762
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1763
            # append sum op for pserver_side_table_grad_list
1764 1765
            table_opt_block.append_op(
                type="sum",
1766
                inputs={"X": pserver_side_table_grad_list},
1767 1768
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1769 1770
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1771
            origin_grad_name = grad_var.name
1772 1773
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1774 1775
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1776
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1777
            grad_var = pserver_program.global_block()._rename_var(
1778
                origin_grad_name, splited_grad_name)
1779 1780 1781 1782 1783 1784 1785

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1786
        # only support sgd now
1787 1788 1789
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1790
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1791

1792 1793 1794
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1795 1796
        return table_opt_block

T
tangwei12 已提交
1797 1798 1799 1800 1801
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1802
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1803
            name="kLookupTablePath",
T
tangwei12 已提交
1804 1805
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1806

W
Wu Yi 已提交
1807
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1808
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1809 1810 1811 1812
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1813
            attrs={'file_path': "none"})
T
tangwei12 已提交
1814 1815 1816

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1817 1818 1819 1820 1821
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1822
        Create vars for each split.
T
typhoonzero 已提交
1823 1824
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1825 1826 1827 1828
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1829
        Returns:
1830
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1831
                from original var name to each var split.
T
typhoonzero 已提交
1832
        """
1833 1834

        # varname->[(block_id, current_block_size)]
1835
        block_map = collections.OrderedDict()
1836

1837
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1838 1839
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1840
            if varname not in block_map:
T
typhoonzero 已提交
1841
                block_map[varname] = []
1842
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1843

M
minqiyang 已提交
1844
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1845
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1846
            if len(splited) == 1:
1847
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1848
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1849
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1850
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1851 1852 1853 1854 1855
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1856
                continue
T
typhoonzero 已提交
1857
            var_mapping[varname] = []
T
typhoonzero 已提交
1858 1859 1860 1861
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1862

T
typhoonzero 已提交
1863
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1864
                size = block[1]
M
minqiyang 已提交
1865
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1866 1867 1868
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1869
                new_var_name = ""
1870
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1871
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1872
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1873 1874
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1875
                                   (varname, i)
T
typhoonzero 已提交
1876
                var = program.global_block().create_var(
T
typhoonzero 已提交
1877 1878
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1879
                    dtype=orig_var.dtype,
1880
                    type=orig_var.type,
T
typhoonzero 已提交
1881
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1882
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1883
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1884
        return var_mapping
T
done  
typhoonzero 已提交
1885

1886
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1887 1888 1889 1890 1891 1892
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1893
            persistable=persistable)
T
done  
typhoonzero 已提交
1894

Q
Qiao Longfei 已提交
1895 1896 1897 1898 1899 1900 1901
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1902
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1903 1904
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1905
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1906
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1907
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1908 1909
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1910
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1911 1912 1913 1914
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1915 1916 1917 1918
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1919
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1920
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1921 1922 1923 1924
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1925
                attrs={
Q
Qiao Longfei 已提交
1926
                    "sections": height_sections,
1927 1928
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1929 1930 1931
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1932

T
typhoonzero 已提交
1933 1934 1935 1936
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1937
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1950
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1951 1952
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1953 1954
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1955
                return param_shape
1956 1957 1958
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1959 1960 1961
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1962 1963
        elif op_type == "sgd":
            pass
1964 1965 1966 1967
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1968 1969
        return orig_shape

1970 1971
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1972
        orig_var_name = ""
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1983
        else:
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2006
            return None
2007 2008 2009 2010
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2011
        else:
2012
            merged_var_name = orig_varname
2013 2014

        merged_var = pserver_block.vars[merged_var_name]
2015 2016 2017
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2018
            for i in range(self.trainer_num):
2019
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2020
                                   (merged_var_name, i)
2021 2022 2023 2024
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2025 2026
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2027 2028 2029 2030 2031
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2032
        return merged_var
T
typhoonzero 已提交
2033

W
Wu Yi 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2096
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2097 2098
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2099
        program = optimize_block.program
T
typhoonzero 已提交
2100
        pserver_block = program.global_block()
2101
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2112 2113 2114 2115
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2116
        for key in opt_op.input_names:
T
typhoonzero 已提交
2117
            if key == "Grad":
W
Wu Yi 已提交
2118 2119 2120
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2131
            elif key == "Param":
W
Wu Yi 已提交
2132
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2133 2134
                if not param_block:
                    return
T
typhoonzero 已提交
2135
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2136
                    name=param_block.name,
T
typhoonzero 已提交
2137
                    persistable=True,
T
typhoonzero 已提交
2138 2139 2140
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2141
            elif key == "LearningRate":
2142
                # learning rate variable has already be created by non-optimize op,
2143
                # don't create it once again.
2144
                lr_varname = opt_op.input(key)[0]
2145
                if lr_varname in pserver_block.vars:
2146 2147 2148 2149 2150 2151 2152 2153 2154
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2155

T
typhoonzero 已提交
2156
        for key in opt_op.input_names:
2157
            new_shape = None
W
Wu Yi 已提交
2158
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
2159
                continue
2160
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2161
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2162
            # update accumulator variable shape
2163 2164
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2165
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2166 2167 2168 2169 2170
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2171

2172
        # change output's ParamOut variable
2173 2174
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2175
        outputs["ParamOut"] = new_inputs["Param"]
2176
        optimize_block.append_op(
T
typhoonzero 已提交
2177 2178
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2179
            outputs=outputs,
G
gongweibao 已提交
2180
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2181

2182 2183 2184 2185 2186 2187
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2199
        grad_block = None
M
minqiyang 已提交
2200
        for _, g in six.iteritems(var_dict):
2201
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2202
                # skip per trainer vars
2203
                if g.name.find(".trainer_") == -1:
2204
                    # only param or grads have splited blocks
2205 2206
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2207 2208
                        grad_block = g
                        break
2209 2210
        return grad_block

Q
Qiyang Min 已提交
2211 2212 2213
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2214
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2215 2216 2217 2218
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2219
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2220 2221 2222

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2223
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2224 2225 2226 2227
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2228
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2229

Y
Yancey1989 已提交
2230
        return block.append_op(
G
gongweibao 已提交
2231
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2232 2233

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2234
        program = optimize_block.program
2235
        # Append the ops for parameters that do not need to be optimized/updated
2236 2237
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2238
        for key, varlist in six.iteritems(inputs):
2239 2240
            if not isinstance(varlist, list):
                varlist = [varlist]
2241 2242 2243
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2244
                # for inputs/outputs
2245
                grad_block = self._get_pserver_grad_param_var(
2246 2247
                    var, program.global_block().vars)
                if grad_block:
2248
                    varlist[i] = grad_block
2249
                elif var.name not in program.global_block().vars:
2250 2251 2252 2253 2254
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2255

2256 2257
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2258
        for key, varlist in six.iteritems(outputs):
2259 2260
            if not isinstance(varlist, list):
                varlist = [varlist]
2261 2262 2263
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2264 2265
                    var, program.global_block().vars)
                if grad_block:
2266
                    varlist[i] = grad_block
2267
                elif var.name not in program.global_block().vars:
2268 2269 2270 2271 2272
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2273

Y
Yancey1989 已提交
2274
        return optimize_block.append_op(
T
typhoonzero 已提交
2275
            type=opt_op.type,
T
typhoonzero 已提交
2276 2277
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2278
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2279

2280 2281 2282 2283
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2284
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2285
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2286 2287 2288 2289 2290 2291
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2292 2293
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2294 2295 2296 2297 2298 2299
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2300
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2301
        if "Param" in op.input_names and \
T
tangwei12 已提交
2302
                "LearningRate" in op.input_names:
2303 2304 2305 2306 2307 2308 2309
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2310
        if op.input("Param")[0] in param_names:
2311 2312 2313
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2314
                param = op.input("Param")[0]
T
typhoonzero 已提交
2315
                if same_or_split_var(n, param) and n != param:
2316 2317 2318
                    return True
            return False

T
typhoonzero 已提交
2319
    def _get_input_map_from_op(self, varmap, op):
2320
        """Returns a dict from op input name to the vars in varmap."""
2321
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2333
        """Returns a dict from op output name to the vars in varmap."""
2334
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2344 2345

    def _get_lr_ops(self):
2346 2347 2348
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2349 2350 2351 2352
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2353 2354 2355 2356 2357
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2358 2359 2360 2361
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2362
            if self._is_optimizer_op(op):
2363 2364 2365 2366
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2367
        block = self.origin_program.global_block()
2368 2369 2370 2371 2372
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2373

2374 2375 2376 2377 2378
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2379
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2380 2381 2382 2383 2384 2385
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2386 2387
                    # we only need to append op for once
                    break
2388
        return lr_ops
Y
Yancey1989 已提交
2389

W
Wu Yi 已提交
2390 2391 2392 2393 2394
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2395 2396
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2397 2398 2399
            return True
        return False

Y
Yancey1989 已提交
2400
    def _get_optimize_pass(self):
2401
        """
2402
        Get optimizer operators, parameters and gradients from origin_program
2403 2404
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2405
            params_grads (dict): parameter->gradient.
2406
        """
Y
Yancey1989 已提交
2407 2408 2409
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2410 2411
        # tmp set to dedup
        optimize_params = set()
2412
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2413
        for op in block.ops:
W
Wu Yi 已提交
2414
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2415
                opt_ops.append(op)
2416 2417 2418 2419 2420 2421
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2422 2423
                        params_grads.append([
                            origin_var_dict[param_name],
2424
                            origin_var_dict[grad_name]
2425
                        ])
Y
Yancey1989 已提交
2426 2427 2428
            else:
                pass
        return opt_ops, params_grads