device_context.h 26.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#include "paddle/fluid/platform/dynload/cusparse.h"
28
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
29
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
30
#endif
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
32
#endif
D
dzhwinter 已提交
33

34 35 36 37 38 39 40 41 42 43
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/cuda_helper.h"  // NOLINT
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"  // NOLINT
#endif

44 45 46 47
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
48
#ifdef PADDLE_WITH_MKLDNN
49
#include "dnnl.hpp"
50
#include "paddle/fluid/framework/data_layout.h"
51
namespace mkldnn = dnnl;
T
tensor-tang 已提交
52 53
#endif

54
#include <map>
W
wanghuancoder 已提交
55

56
#include "glog/logging.h"
Y
Yi Wang 已提交
57 58
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
59
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
60
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
61
#endif
62
#ifdef PADDLE_WITH_ASCEND_CL
63 64
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
65
#endif
Q
qijun 已提交
66
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
67

68 69 70 71
// This aias is required for now so that namespace name changes can be made to
// less than 20 files at a time. After all the names are changed it will be
// removed.

W
wanghuancoder 已提交
72 73 74 75 76
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

77
#ifdef PADDLE_WITH_XPU
78 79
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
80 81
#endif

82 83
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
84
#include "paddle/fluid/platform/device/npu/npu_info.h"
85 86
#endif

Q
QI JUN 已提交
87 88 89
namespace paddle {
namespace platform {

90
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
91 92 93 94
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
95
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
96 97 98 99
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
100 101
#endif  // PADDLE_WITH_CUDA

102 103 104 105
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
106
  NPU = 3,
107 108

  MAX_DEVICE_TYPES = 4,
109 110
};

111 112
DeviceType Place2DeviceType(const platform::Place& place);

113 114 115
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
116
constexpr DeviceType kNPU = DeviceType::NPU;
117

Q
QI JUN 已提交
118 119
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
120
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
121
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
122

123
  virtual void Wait() const {}
Q
QI JUN 已提交
124 125
};

Q
qijun 已提交
126 127
class CPUDeviceContext : public DeviceContext {
 public:
128
  CPUDeviceContext();
Q
qijun 已提交
129
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
130

131
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
132

L
liaogang 已提交
133
  Place GetPlace() const override;
Y
Yu Yang 已提交
134

Q
qijun 已提交
135
 private:
D
dzhwinter 已提交
136
  CPUPlace place_;
Q
qijun 已提交
137
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
138 139
};

Y
Yang Yu 已提交
140 141 142 143 144 145 146 147
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

148
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
149
namespace xpu = baidu::xpu::api;
150 151 152 153 154 155
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
Q
QingshuChen 已提交
156
  XPUVersion xpu_version() const { return xpu_version_; }
157 158 159 160 161 162
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

163
#ifdef PADDLE_WITH_XPU_BKCL
164
  /*! \brief  Return bkcl context. */
165 166 167 168 169 170
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

171 172
 private:
  XPUPlace place_;
Q
QingshuChen 已提交
173
  XPUVersion xpu_version_;
174
  xpu::Context* context_;
175 176 177
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
178 179 180 181 182 183 184 185 186 187 188 189 190

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

191 192 193 194 195 196 197 198
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
199

200 201 202 203 204 205
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

206 207 208 209 210 211 212
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

228 229 230
 private:
  NPUPlace place_;
  aclrtContext context_;
231 232 233 234

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

  Place GetPlace() const override;

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

271 272 273
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
274
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
275
class EigenCudaStreamDevice;
S
sneaxiy 已提交
276

277 278 279 280 281
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
282 283
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

299 300 301 302 303 304
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

305
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
306

307 308 309
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
310
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
311
#endif
312

313
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
314 315 316
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
317
#endif
G
Guo Sheng 已提交
318

319 320 321 322 323 324 325 326 327 328 329
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
330 331 332 333 334
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

354 355 356 357 358
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
359 360 361 362 363 364 365
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
366 367 368 369 370
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
371 372
    }
  }
373
#endif
374 375 376

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
377 378 379 380 381
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
382 383
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
384 385 386 387
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
388 389
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
390
            << ", but MIOPEN version in your machine is "
391
            << local_miopen_version / 100 << "." << local_miopen_version % 100
392 393 394 395 396 397 398 399
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
400 401 402 403 404 405 406 407 408 409 410 411 412
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
413 414
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
415
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
416
#endif
417 418 419 420 421
    } else {
      cudnn_handle_ = nullptr;
    }
  }

422
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
423
  void InitCuSolverContext() {
424 425
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
426 427
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
428
#endif
G
Guo Sheng 已提交
429

430 431
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
432 433 434
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
#else
435
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
436
#endif
437 438 439 440 441 442 443
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
444
    cublas_tf32_tensor_core_handle_.reset();
445 446
  }

447
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
448 449 450 451 452 453
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
454
#endif
G
Guo Sheng 已提交
455

456 457 458 459
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
460 461 462
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
463
  cudnnHandle_t cudnn_handle_;
464
#endif
465 466
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
467
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
468
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
469
  cusolverDnHandle_t cusolver_dn_handle_;
470
#endif
471 472 473
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

474
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
475
 public:
D
dzhwinter 已提交
476
  explicit CUDADeviceContext(CUDAPlace place);
477
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
478

479
  /*! \brief  Wait for all operations completion in the stream. */
480
  void Wait() const override;
Q
QI JUN 已提交
481

482
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
483
  Place GetPlace() const override;
484

K
Kexin Zhao 已提交
485
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
486 487
  int GetComputeCapability() const;

488 489 490
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

491 492 493 494 495 496
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

497 498 499
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

500 501 502
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

503 504 505
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
506
    return context()->CublasCall(callback);
507 508 509 510 511 512 513 514 515
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
516
    return context()->TensorCoreCublasCallIfAvailable(callback);
517
  }
S
sneaxiy 已提交
518

519 520 521 522
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
523
  cudnnHandle_t cudnn_handle() const;
524
#endif
525

526 527 528 529
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
530
  cublasHandle_t cublas_handle() const;
531
#endif
532

S
sneaxiy 已提交
533 534 535 536 537 538 539 540 541
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

542
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
543
  cusolverDnHandle_t cusolver_dn_handle() const;
544
#endif
G
Guo Sheng 已提交
545

Q
init  
qijun 已提交
546
  /*! \brief  Return cuda stream in the device context. */
547
  gpuStream_t stream() const;
Q
QI JUN 已提交
548

549
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
550 551 552 553 554
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
555
#endif
Q
qingqing01 已提交
556

Y
Yu Yang 已提交
557
  template <typename Callback>
558
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
559
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
560 561
  }

S
sneaxiy 已提交
562 563
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
564 565 566 567 568
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
569 570
  }

571
  void ResetDefaultContext(const stream::Priority& priority) {
572 573 574
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

575
  void ResetThreadContext(const stream::Priority& priority) {
576 577 578 579 580 581 582 583 584 585
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
586

Q
QI JUN 已提交
587
 private:
D
dzhwinter 已提交
588
  CUDAPlace place_;
589
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
590

591 592 593 594 595 596
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
597

598 599
  mutable std::mutex cudnn_handle_mtx_;

600
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
601 602 603 604 605 606
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
607
#endif
Q
qingqing01 已提交
608

C
chengduo 已提交
609 610 611 612 613
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
614
  int max_threads_per_block_;
615
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
616

617
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
618
};
Q
qijun 已提交
619

620 621
class CudnnWorkspaceHandle {
 public:
622 623
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
624 625 626 627 628 629 630 631

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
632 633 634 635
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
636 637 638 639 640 641 642 643 644 645 646 647 648
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

649
  void ReallocWorkspace(size_t required_workspace_bytes);
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
666
  std::mutex* mtx_;
667 668
};

Y
Yang Yu 已提交
669 670
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
671
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
672 673
};

C
chengduoZH 已提交
674
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
675 676 677 678 679 680
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
681

C
chengduoZH 已提交
682 683 684 685 686 687 688 689 690 691 692
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
693
#endif
Q
qijun 已提交
694

T
tensor-tang 已提交
695
#ifdef PADDLE_WITH_MKLDNN
696 697 698 699 700 701

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
702
    bool said_once = false;
703 704 705 706 707 708 709 710 711 712 713
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
714
    // MKL-DNN stream used for execution of primitives (per-thread)
715 716
    dnnl::engine cur_engine;
    dnnl::stream cur_stream;
J
Jacek Czaja 已提交
717 718
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
719
    void* exec_ptr_ = nullptr;
720 721

    Body();
722
    ~Body();
723 724 725 726 727 728
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
729
    void log_lib_version(void);
730 731
    const dnnl::engine& get_engine(void);
    dnnl::stream& get_stream(void);
J
Jacek Czaja 已提交
732 733 734 735
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
736 737
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
753

T
tensor-tang 已提交
754 755
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
756 757 758 759 760 761 762 763 764 765
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
766
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
767 768 769
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
770
  using ShapeBlob = umap_key_string_t<KeyBlob>;
771 772
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

773 774 775 776
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
777
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
778 779 780
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
781

T
tensor-tang 已提交
782 783 784
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
785
  const dnnl::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
786

787
  // Register object to currently used executor's map
788 789
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
790

791
  // Remove all entries from the blob map
792
  void ResetBlobMap(void* ptr);
793 794 795

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
796

797 798 799
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

800 801
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
802

803
  // Calculate number of oneDNN objects cached
804
  unsigned int GetCachedObjectsNumber(void) const;
805

806 807
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
808

809 810 811 812
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
813
 private:
814
  std::shared_ptr<BlobMap> p_blobmap_;
815 816
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
817
  std::shared_ptr<ExecShape> p_exec_items_;
818
  std::shared_ptr<std::mutex> p_mutex_;
819
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
820 821 822
};
#endif

D
dzhwinter 已提交
823 824 825 826 827
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
828
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
829 830 831
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
832 833 834 835
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
836
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
837 838 839 840 841 842
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

843 844
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
845
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
846
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
847

Y
Yang Yu 已提交
848 849 850 851 852 853 854
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

855 856
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
857 858
 private:
  static DeviceContextPool* pool;
859 860
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
861 862 863
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
864 865
}  // namespace platform
}  // namespace paddle