memory_optimize_pass.cc 30.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
#include <algorithm>
#include <fstream>
18
#include <functional>
Y
Yan Chunwei 已提交
19 20
#include <limits>
#include <map>
21
#include <set>
Y
Yan Chunwei 已提交
22
#include <string>
23
#include <type_traits>
Y
Yan Chunwei 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <utility>
#include <vector>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
#include "paddle/fluid/framework/ir/graph_traits.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace inference {
namespace analysis {

using framework::ir::Graph;
using framework::ir::Node;
using framework::ir::TopologyVarientSort;
using space_table_t = MemoryOptimizePass::space_table_t;

43 44 45 46 47 48 49 50
typedef struct {
  std::string name;
  size_t size;
  int cluster;
  std::pair<int, int> lifetime;
  std::unordered_set<std::string> adj;
} MemNode;

Y
Yan Chunwei 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
// Collect the lifecycles of the tensors.
// Traverse the graph in topological order.
// The traversal order also affect the lifecycles, so different sort_kind is
// used.
void MemoryOptimizePass::CollectLifeCycle(
    std::unordered_map<std::string, lifecycle_t>* lifecycles,
    int sort_kind) const {
  max_lifecycle_ = 0;
  for (auto* op_node : framework::ir::TopologyVarientSort(
           *graph_, static_cast<framework::ir::SortKind>(sort_kind))) {
    if (!op_node->IsOp()) continue;
    auto reads = op_node->inputs;
    auto writes = op_node->outputs;

    std::vector<Node*> requires(reads.begin(), reads.end());
    requires.insert(requires.end(), writes.begin(), writes.end());

    // Disable reuse of feed variables.
    if (op_node->Name() == "feed") {
      for (auto* node : op_node->outputs) {
        auto var = node->Name();
        lifecycles->emplace(var,
                            std::make_pair(0, std::numeric_limits<int>::max()));
      }
    } else {
      // Normal operators.
      for (const Node* node : requires) {
        if (node->Var()->Persistable()) continue;
        std::string var = node->Name();
        if (!lifecycles->count(var)) {
          (*lifecycles)[var] = std::make_pair(max_lifecycle_, max_lifecycle_);
        } else {
          (*lifecycles)[var].second =
              std::max(max_lifecycle_, lifecycles->at(var).second);  // max()
        }
      }
    }

    ++max_lifecycle_;
  }
}

// TODO(Superjomn) Make this a general help method.
int DataTypeToSpace(framework::proto::VarType_Type type) {
  switch (type) {
    case framework::proto::VarType_Type_BOOL:
      return sizeof(bool);
    case framework::proto::VarType_Type_FP32:
      return sizeof(float);
    case framework::proto::VarType_Type_INT32:
      return sizeof(int32_t);
    case framework::proto::VarType_Type_INT64:
      return sizeof(int64_t);
    default:
      PADDLE_THROW("Unknown data type");
  }
}

109 110 111
void MemoryOptimizePass::CollectVarMemorySize(
    space_table_t* space_table) const {
  const int fake_batch_size = 1;
112

113
  auto valid_var = [&](framework::ir::Node* node) -> bool {
114 115
    std::set<std::string> invalid_op = {"while",
                                        "conditional_block",
116
                                        "tensorrt_engine",
117 118 119 120 121
                                        "conditional_block_infer",
                                        "merge_lod_tensor_infer",
                                        "merge_lod_tensor",
                                        "equal",
                                        "lod_reset"};
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    for (auto* tmp : node->inputs) {
      CHECK(tmp->IsOp());
      std::string op_type = tmp->Op()->Type();
      if (std::find(invalid_op.begin(), invalid_op.end(), op_type) !=
          invalid_op.end()) {
        return false;
      }
    }
    for (auto* tmp : node->outputs) {
      CHECK(tmp->IsOp());
      std::string op_type = tmp->Op()->Type();
      if (std::find(invalid_op.begin(), invalid_op.end(), op_type) !=
          invalid_op.end()) {
        return false;
      }
    }
    return true;
  };
140 141 142 143
  // Collect tensors from graph.
  for (auto* node : graph_->Nodes()) {
    if (node->IsVar() &&
        node->Var()->GetType() ==
144 145
            framework::proto::VarType::Type::VarType_Type_LOD_TENSOR &&
        valid_var(node)) {
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
      // Parameters will not be reused.
      if (node->Var()->Persistable()) continue;
      auto shape = node->Var()->GetShape();
      for (auto& v : shape) {
        if (v < 0) v = fake_batch_size;
      }

      int size = std::accumulate(shape.begin(), shape.end(), 1,
                                 std::multiplies<int>());
      (*space_table)[node->Var()->Name()] =
          size * DataTypeToSpace(node->Var()->GetDataType());
    }
  }
}

void MakeSimpleReusePlan(
    const std::unordered_map<std::string, std::pair<int, int>>& lifecycles,
    const std::unordered_map<std::string, size_t>& space_table,
    std::unordered_map<std::string, std::string>* node2cluster,
    std::unordered_map<std::string, int>* cluster_size) {
  std::vector<MemNode> mem_nodes;
  for (auto& data : lifecycles) {
168
    if (!space_table.count(data.first)) continue;
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    MemNode temp_node;
    temp_node.name = data.first;
    temp_node.size = space_table.at(data.first);
    temp_node.cluster = -1;
    temp_node.lifetime = data.second;
    mem_nodes.push_back(temp_node);
  }
  auto overlap = [](std::pair<int, int> a, std::pair<int, int> b) -> bool {
    return b.second >= a.first && a.second >= b.first;
  };
  // If the lifetime of two nodes is overwritten, we set them as adjacent nodes.
  for (size_t i = 0; i < mem_nodes.size(); i++) {
    for (size_t j = i + 1; j < mem_nodes.size(); j++) {
      if (overlap(mem_nodes[i].lifetime, mem_nodes[j].lifetime)) {
        mem_nodes[i].adj.insert(mem_nodes[j].name);
        mem_nodes[j].adj.insert(mem_nodes[i].name);
      }
    }
  }

  // Sort the nodes according to the node memory size.
  auto sort_func = [](MemNode a, MemNode b) { return a.size > b.size; };
  std::sort(mem_nodes.begin(), mem_nodes.end(), sort_func);

  // Generating Memory Reuse Strategy Based on Greedy Way
  for (size_t i = 0; i < mem_nodes.size(); i++) {
    if (mem_nodes[i].cluster >= 0) continue;
    int cluster_index = cluster_size->size();
    mem_nodes[i].cluster = cluster_index;
    (*cluster_size)[mem_nodes[i].name] = mem_nodes[i].size;
    (*node2cluster)[mem_nodes[i].name] = mem_nodes[i].name;
    std::unordered_set<std::string> cluster_adj = mem_nodes[i].adj;
    for (size_t j = i + 1; j < mem_nodes.size(); j++) {
      if (mem_nodes[j].cluster < 0 &&
          (cluster_adj.find(mem_nodes[j].name) == cluster_adj.end())) {
        (*node2cluster)[mem_nodes[j].name] = mem_nodes[i].name;
        mem_nodes[j].cluster = cluster_index;
        for (auto& n : mem_nodes[j].adj) {
          cluster_adj.insert(n);
        }
      }
    }
  }
  for (auto& cluster : *cluster_size) {
    LOG(INFO) << "Cluster name : " << cluster.first
              << "  size: " << cluster.second;
  }
}

Y
Yan Chunwei 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
// Collect the memory size of the tensors.
void MemoryOptimizePass::CollectVarMemorySize(
    const std::unordered_map<std::string, size_t>& batch_var_ave_dim,
    std::unordered_map<std::string, Node*>* tensor_nodes,
    space_table_t* space_table) const {
  // Collect tensors from graph.
  for (auto* node : graph_->Nodes()) {
    if (node->IsVar() &&
        node->Var()->GetType() ==
            framework::proto::VarType::Type::VarType_Type_LOD_TENSOR) {
      // Parameters will not be reused.
      if (node->Var()->Persistable()) continue;
      (*tensor_nodes)[node->Name()] = node;
      (*space_table)[node->Name()] =
          DataTypeToSpace(node->Var()->GetDataType()) *
          batch_var_ave_dim.at(node->Name());
    }
  }
}

// Find a sutable (big enough but smallest to avoid memory waste).
//
// Args:
// @tensor_nodes: the tensor nodes in the ir::Graph.
// @free_existing_tensors: the allocated tensor and are free.
// @space_table: the memory space of tensors.
// @tensor2use: the tensor that requires memory.
//
// Returns:
// true if found some existing tensor to reuse.
// false if no sutable tensor to reuse, one need to allocate a new tensor for
// this requirement.
// The suitable tensor for reuse is one that is approximately equal to the
// memory demand.
bool FindSuitableTensorToReuse(
    const std::string& tensor, int space_required,
    const std::unordered_map<std::string, Node*>& tensor_nodes,
    std::unordered_set<std::string>* free_existing_tensors,
    const space_table_t& space_table,
    const std::vector<std::unordered_set<std::string>>& var_clusters,
    std::string* tensor2use) __SHOULD_USE_RESULT__;

bool FindSuitableTensorToReuse(
    const std::string& tensor, int space_required,
    const std::unordered_map<std::string, Node*>& tensor_nodes,
    std::unordered_set<std::string>* free_existing_tensors,
    const space_table_t& space_table,
    const std::vector<std::unordered_set<std::string>>& var_clusters,
    std::string* tensor2use) {
  std::pair<std::string, size_t> best_fit;
  best_fit.second = std::numeric_limits<int>::max();
  VLOG(5) << "Split Tensors to " << var_clusters.size() << " clusters";

  // find the cluster this var belongs to.
  const std::unordered_set<std::string>* cluster = nullptr;
  for (const auto& c : var_clusters) {
    if (c.count(tensor)) {
      cluster = &c;
      break;
    }
  }
  PADDLE_ENFORCE_NOT_NULL(cluster,
                          "something wrong in memory optimization, the "
                          "variable %s not in the clusters.",
                          tensor);

  for (auto& candidate : *free_existing_tensors) {
    // This is not a temporary tensor.
    if (!space_table.count(candidate)) continue;
    // Not in the same cluster.
    if (!cluster->count(candidate)) continue;

    size_t space = space_table.at(candidate);
291 292 293 294 295
    PADDLE_ENFORCE(
        space <= std::numeric_limits<std::make_signed<size_t>::type>::max(),
        "space overload");
    size_t space_diff =
        std::abs((std::make_signed<size_t>::type)space - space_required);
Y
Yan Chunwei 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    if (space_diff < best_fit.second) {
      best_fit.first = candidate;
      best_fit.second = space_diff;
    }
  }

  if (best_fit.second < std::numeric_limits<int>::max()) {
    *tensor2use = best_fit.first;
    return true;
  }
  return false;
}

// Allocate new tensor instead of reusing the existing one.
void AllocateNewTensor(
    const std::string& name, size_t space_required,
    const std::unordered_map<std::string, Node*>& tensor_nodes,
    std::unordered_set<std::string>* free_existing_tensors,
    space_table_t* space_table,
    std::unordered_map<std::string, std::string>* reuse_table) {
  // The newly born tensor is free to be used.
  free_existing_tensors->insert(name);
  // Register the space it has.
  PADDLE_ENFORCE(space_table->count(name));
  space_table->at(name) = std::max(space_table->at(name), space_required);
  // The allocated new tensor use the memory of itself.
  (*reuse_table)[name] = name;
}

// Free a tensor and make it resuable.
// @tensor: the tensor to free.
// @free_existing_tensors: the free and allocated tensors.
// @reuse_table: a map from a fake tensor to the existing allocated tensor.
void FreeATensor(const std::string& tensor,
                 std::unordered_set<std::string>* free_existing_tensors,
                 std::unordered_map<std::string, std::string>* reuse_table) {
  if (tensor == "feed" || tensor == "fetch") return;
  // the really allocated tensor.
  const auto& free_tensor = reuse_table->at(tensor);

  free_existing_tensors->insert(free_tensor);
}

// Reuse a free existing tensor.
void ReuseATensor(const std::string& tensor, const std::string& tensor2reuse,
                  size_t memory_size,
                  std::unordered_set<std::string>* free_existing_tensors,
                  std::unordered_map<std::string, std::string>* reuse_table,
                  space_table_t* reused_space_table) {
  auto it = free_existing_tensors->find(tensor2reuse);
  PADDLE_ENFORCE(it != free_existing_tensors->end());
  free_existing_tensors->erase(it);
  (*reuse_table)[tensor] = tensor2reuse;
  // Update the memory size of a reused tensor, the memory will grow if the
  // required memory is larger.
  (*reused_space_table)[tensor2reuse] =
      std::max(reused_space_table->at(tensor2reuse), memory_size);
}

// Calculate the memory usage.
void EvaluateMemoryUsage(
    const std::unordered_map<std::string, std::string>& reuse_table,
    const space_table_t& space_table,
    const std::unordered_map<std::string, size_t>& var_batch_ave_size,
    size_t* allocated, size_t* saved) {
  *allocated = 0;
  *saved = 0;

  for (auto elem : reuse_table) {
    if (elem.first == elem.second) {
      *allocated += space_table.at(elem.first);
      VLOG(4) << elem.first << " <-> " << elem.second << " "
              << space_table.at(elem.first) << " "
              << space_table.at(elem.second);
    } else {
      *saved += space_table.at(elem.first);
      VLOG(4) << "reuse " << elem.first << " -> " << elem.second;
    }
  }
  VLOG(4) << "allocated " << *allocated;
  VLOG(4) << "saved " << *saved;
}

// Return saved ratio.
void MemoryOptimizePass::MakeReusePlan(
    const std::vector<std::unordered_set<std::string>>& var_clusters,
    const std::unordered_map<std::string, size_t>& var_batch_ave_size,
    const space_table_t& space_table,
    std::unordered_map<std::string, std::string>* reuse_table, int sort_kind,
    MemoryAllocation* memory_allocation) const {
  // Clear the existing plan.
  reuse_table->clear();

  // The `space_table` stores the real memory size for each tensor.
  // The `reused_space_table` stores the maximum memory size required by a
  // tensor during the memory reusing, the small tensor might be reused by a
  // larger tensor, and the memory size of the small one will grow.
  auto reused_space_table = space_table;

  std::unordered_map<std::string, lifecycle_t> life_cycles;
  std::unordered_map<std::string, Node*> tensor_nodes;
  // The allocated tensors whose memory can be reused, they will live across the
  // program execution.
  std::unordered_set<std::string> existing_tensors;
  // The existing tensor that has been allocated, and is also free to reuse.
  std::unordered_set<std::string> free_existing_tensors;

  CollectLifeCycle(&life_cycles, sort_kind);

  for (int age = 0; age < max_lifecycle_; ++age) {
    std::unordered_set<std::string> born_tensors;
    std::unordered_set<std::string> dead_tensors;
    // Gather the dead and born tensors.
    for (auto elem_it = life_cycles.begin(); elem_it != life_cycles.end();
         elem_it++) {
      if (elem_it->second.first == -1) {
        continue;
      }
      const auto& tensor = elem_it->first;
      const auto& lifecycle = elem_it->second;
      VLOG(4) << "process " << tensor << " reuse " << lifecycle.first << "->"
              << lifecycle.second;

      // Collect newly born tensors.
      if (lifecycle.first == age) {
        born_tensors.insert(tensor);
      }
      // Collect dead tensors whose memory can be reused.
      else if (lifecycle.second < age) {  // NOLINT
        dead_tensors.insert(tensor);
        // remove to avoid duplicate process.
        elem_it->second.first = -1;  // avoid duplicate search
      }
    }

    // Reuse the dead tensors for born tensors
    for (const auto& tensor : born_tensors) {
      // Skip the feed and fetch tensor for that they share data with others.
      std::string tensor2reuse;
      if (!space_table.count(tensor)) continue;
      size_t space_required = space_table.at(tensor);
      if (FindSuitableTensorToReuse(tensor, space_required, tensor_nodes,
                                    &free_existing_tensors, reused_space_table,
                                    var_clusters, &tensor2reuse)) {
        if (tensor != tensor2reuse) {
          VLOG(4) << tensor << " -> " << tensor2reuse;
        }
        ReuseATensor(tensor, tensor2reuse, space_required,
                     &free_existing_tensors, reuse_table, &reused_space_table);
      } else {
        VLOG(4) << "allocate " << tensor;
        AllocateNewTensor(tensor, space_required, tensor_nodes,
                          &free_existing_tensors, &reused_space_table,
                          reuse_table);
        ReuseATensor(tensor, tensor, space_required, &free_existing_tensors,
                     reuse_table, &reused_space_table);
      }
    }

    for (const auto& tensor : dead_tensors) {
      // free its memory.
      FreeATensor(tensor, &free_existing_tensors, reuse_table);
    }
  }

  EvaluateMemoryUsage(*reuse_table, reused_space_table, var_batch_ave_size,
                      &(memory_allocation->allocated),
                      &(memory_allocation->saved));
  memory_allocation->sort_kind = sort_kind;
}

void BuildVarNodeTable(Graph* graph,
                       std::unordered_map<std::string, Node*>* var_node_table) {
  for (auto* node : graph->Nodes()) {
    if (node->IsVar()) {
      (*var_node_table)[node->Name()] = node;
    }
  }
}

// NOTE The optimized opdesc doesn't match ir::Graph.
void UpdateOpDescsByReuse(
    Graph* graph,
    const std::unordered_map<std::string, std::string>& reuse_table,
    int sort_kind) {
  // TODO(Superjomn) change here to be compatible with the runtime order.
  for (auto* node : TopologyVarientSort(
           *graph, static_cast<framework::ir::SortKind>(sort_kind))) {
    if (node->IsOp()) {
      // Replace the original inputs/outputs with the reused tensors.
      std::unordered_map<std::string, std::vector<std::string>> in_args,
          out_args;
      for (auto argument : node->Op()->Inputs()) {
        for (const auto& x : argument.second) {
          auto name = x;
          if (reuse_table.count(x) && reuse_table.at(x) != x) {
            name = reuse_table.at(x);
          }
          in_args[argument.first].push_back(name);
          VLOG(4) << node->Name() << " input " << x << " -> " << name;
        }
      }

499 500 501 502 503 504 505 506 507 508 509
      // modify the graph
      for (auto input_node : node->inputs) {
        PADDLE_ENFORCE(input_node->IsVar());
        std::string input_node_name = input_node->Name();
        if (reuse_table.count(input_node_name) &&
            reuse_table.at(input_node_name) != input_node_name) {
          auto name = reuse_table.at(input_node_name);
          input_node->RenameVar(name);
        }
      }

Y
Yan Chunwei 已提交
510 511 512 513 514 515 516 517 518 519 520
      for (auto argument : node->Op()->Outputs()) {
        for (const auto& x : argument.second) {
          auto name = x;
          if (reuse_table.count(x) && reuse_table.at(x) != x) {
            name = reuse_table.at(x);
          }
          out_args[argument.first].push_back(name);
          VLOG(4) << node->Name() << " output " << x << " -> " << name;
        }
      }

521 522 523 524 525 526 527 528 529 530 531
      // modify the graph
      for (auto out_node : node->outputs) {
        PADDLE_ENFORCE(out_node->IsVar());
        std::string out_node_name = out_node->Name();
        if (reuse_table.count(out_node_name) &&
            reuse_table.at(out_node_name) != out_node_name) {
          auto name = reuse_table.at(out_node_name);
          out_node->RenameVar(name);
        }
      }

Y
Yan Chunwei 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
      // Update arguments.
      for (auto& arg : in_args) {
        node->Op()->SetInput(arg.first, arg.second);
      }
      for (auto& arg : out_args) {
        node->Op()->SetOutput(arg.first, arg.second);
      }
      node->Op()->Flush();
    }
  }
}

void MemoryOptimizePass::PerformReusePlan(
    const std::unordered_map<std::string, std::string>& reuse_table,
    int sort_kind, std::unordered_set<std::string>* vars2remove) const {
  std::unordered_map<std::string, Node*> var_node_table;
  BuildVarNodeTable(graph_, &var_node_table);
  UpdateOpDescsByReuse(graph_, reuse_table, sort_kind);

  for (auto& item : reuse_table) {
    if (item.first != item.second) {
      vars2remove->insert(item.first);
    }
  }
  VLOG(2) << "to remove vars " << vars2remove->size();
}

std::vector<std::string> split(const std::string& line, char delim) {
  std::vector<std::string> res;
  std::string field;
  std::stringstream line_stream(line);
  while (std::getline(line_stream, field, delim)) {
    res.emplace_back(field);
  }
  return res;
}

// Deserialize the batch var shapes from the cache file.
std::vector<std::map<std::string, std::vector<int>>> DeseralizeBatchVarShapes(
    const std::string& path) {
  std::ifstream file(path);
  PADDLE_ENFORCE(file.is_open(), "failed to open %s  to read cache", path);
  std::string line;
  std::vector<std::map<std::string, std::vector<int>>> batch_shapes;

  while (std::getline(file, line)) {
    std::map<std::string, std::vector<int>> batch;
    for (const auto& var_info : split(line, ';')) {
      auto fields = split(var_info, ':');
      PADDLE_ENFORCE_EQ(fields.size(), 2UL);
      auto var_name = fields.front();
      auto shape_str = split(fields[1], ',');
      std::vector<int> shape;
      for (const auto& v : shape_str) shape.push_back(std::stoi(v));
      batch[var_name] = shape;
    }
    batch_shapes.push_back(batch);
  }
  return batch_shapes;
}

Y
Yan Chunwei 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
// Replace the -1 in shape to a real number to fake the shape.
std::vector<std::map<std::string, std::vector<int>>> FakeBatchVarShapes(
    const framework::ProgramDesc& program) {
  std::vector<std::map<std::string, std::vector<int>>> res;
  res.emplace_back();
  auto& record = res.front();
  const int fake_batch_size = 3;
  for (auto* var : program.Block(0).AllVars()) {
    if (var->GetType() ==
        framework::proto::VarType::Type::VarType_Type_LOD_TENSOR) {
      auto shape = var->GetShape();
      for (auto& v : shape) {
        if (v < 0) v = fake_batch_size;
      }
      record[var->Name()].assign(shape.begin(), shape.end());
    }
  }
  return res;
}

Y
Yan Chunwei 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
// Calculate the average dim of each tensor from the batch shape cache.
std::unordered_map<std::string, size_t> GetBatchAverageSize(
    const std::vector<std::map<std::string, std::vector<int>>>& batches) {
  std::unordered_map<std::string, size_t> var2size;
  // The average size of the batches for each variable.
  int num_batch = 0;
  for (const auto& batch : batches) {
    num_batch++;
    for (const auto& item : batch) {
      int dim = std::accumulate(item.second.begin(), item.second.end(), 1,
                                [](int a, int b) { return a * b; });
      var2size[item.first] += dim;
    }
  }

  for (auto& item : var2size) {
    item.second /= num_batch;
  }

  return var2size;
}

// Analysis the batch shapes loading from the cache file.
// By splitting the variables to different clusters by analyzing their batch
// size, we can pre-schedule the changes of difference LoDTensor when different
// length of input sequences is entered.
// This should works fine for the models operating on sentences.
std::vector<std::unordered_set<std::string>> AnalysisBatchShapesByBatchSize(
    const std::vector<std::map<std::string, std::vector<int>>>& batches) {
  // collect the batch size of each shape and combine to a stringstream in
  // converient to generate a hash.
  std::unordered_map<std::string, std::stringstream> var_batchsize_hashes;
  for (auto& batch : batches) {
    for (auto& ele : batch) {
Y
Yan Chunwei 已提交
647
      PADDLE_ENFORCE(!ele.second.empty());
Y
Yan Chunwei 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
      int batch_size = ele.second.front();
      // TODO(Superjomn) might consume large memory here, use combine hash.
      var_batchsize_hashes[ele.first] << batch_size;
    }
  }

  // Split to sets by batch size sequences.
  std::unordered_map<size_t /*hash*/, std::unordered_set<std::string>>
      shape_sets;
  for (auto& ele : var_batchsize_hashes) {
    auto hash = std::hash<std::string>()(ele.second.str());
    shape_sets[hash].insert(ele.first);
  }
  std::vector<std::unordered_set<std::string>> res;
  for (auto& ele : shape_sets) {
    res.emplace_back(std::move(ele.second));
  }

  VLOG(3) << "Cluster by batch_size and get " << res.size() << " clusters";
  return res;
}

// Analysis the batch shapes loading from the cache file, and split them to
// different clusters by their size.
// This should works fine for the overall models.
std::vector<std::unordered_set<std::string>> AnalysisBatchShapesBySimilarSize(
    const space_table_t& space_table,
    const std::vector<std::map<std::string, std::vector<int>>>& batches,
    int interval = 200000) {
  PADDLE_ENFORCE_GT(interval, 0);
  // cluster to different clusters.
  size_t max_size = 0;
  for (auto& item : space_table) {
    max_size = std::max(item.second, max_size);
  }
  VLOG(4) << "tensor max size " << max_size;

  std::vector<std::unordered_set<std::string>> res;

  // cluster by intervals.
  for (size_t interval_size = 0; interval_size <= max_size;
       interval_size += interval) {
    std::unordered_set<std::string> cluster;
    for (auto& item : space_table) {
      if (interval_size <= item.second &&
          interval_size + interval > item.second) {
        cluster.insert(item.first);
      }
    }
    if (!cluster.empty()) {
      res.push_back(cluster);
    }
  }

  VLOG(3) << "Cluster by interval and get " << res.size() << " cluster";
  return res;
}

std::string MemoryOptimizePass::repr() const { return "memory optimize pass"; }

Y
Yan Chunwei 已提交
708 709 710 711 712 713 714 715 716 717 718
std::pair<size_t, size_t> GetRange(
    const std::unordered_map<std::string, size_t>& ave_size) {
  auto res = std::make_pair(std::numeric_limits<size_t>::max(),
                            std::numeric_limits<size_t>::min());
  for (auto& item : ave_size) {
    res.first = std::min(item.second, res.first);
    res.second = std::max(item.second, res.second);
  }
  return res;
}

Y
Yan Chunwei 已提交
719 720
void MemoryOptimizePass::RunImpl(Argument* argument) {
  // When force update, should not optimize memory.
Y
Yan Chunwei 已提交
721 722
  if (!argument->enable_memory_optim() ||
      argument->static_memory_optim_force_update())
Y
Yan Chunwei 已提交
723 724 725 726 727 728 729 730
    return;
  graph_ = argument->main_graph_ptr();

  auto path = GetMemoryCachePath(
      argument->model_dir_valid() ? argument->model_dir() : "",
      argument->model_program_path_valid() ? argument->model_program_path()
                                           : "");
  VLOG(3) << "Load memory cache from " << path;
Y
Yan Chunwei 已提交
731 732
  std::vector<std::map<std::string, std::vector<int>>> batches;

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
  if (!(argument->static_memory_optim() && inference::IsFileExists(path))) {
    string::PrettyLogInfo("--- Performing dynamic memory optimize");
    // batches = FakeBatchVarShapes(argument->main_program());
    int sort_kind = 0;
    std::unordered_map<std::string, lifecycle_t> lifecycles;
    space_table_t space_table;
    std::unordered_map<std::string, std::string> node2cluster;
    std::unordered_map<std::string, int> cluster_size;

    CollectLifeCycle(&lifecycles, sort_kind);
    CollectVarMemorySize(&space_table);
    MakeSimpleReusePlan(lifecycles, space_table, &node2cluster, &cluster_size);
    UpdateOpDescsByReuse(graph_, node2cluster, sort_kind);
    return;

  } else {
Y
Yan Chunwei 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761
    string::PrettyLogInfo("--- Performing static memory optimize");
    batches = DeseralizeBatchVarShapes(path);
  }
  auto var_batch_ave_size = GetBatchAverageSize(batches);

  // Get min and max memory size.
  const auto range = GetRange(var_batch_ave_size);
  const int cluster_size = std::max(
      static_cast<int>((range.second - range.first) / 100 /*cluster num*/),
      1024);
  const int cluster_size1 = std::max(
      static_cast<int>((range.second - range.first) / 1000 /*cluster num*/),
      1024);
Y
Yan Chunwei 已提交
762

Y
Yan Chunwei 已提交
763 764 765
  std::unordered_map<std::string, Node*> tensor_nodes;
  space_table_t space_table;
  CollectVarMemorySize(var_batch_ave_size, &tensor_nodes, &space_table);
Y
Yan Chunwei 已提交
766

Y
Yan Chunwei 已提交
767 768
  std::unordered_map<std::string, std::string> reuse_table;
  double max_saving_ratio = 0.;
Y
Yan Chunwei 已提交
769

Y
Yan Chunwei 已提交
770
  std::vector<std::function<MemoryAllocation()>> strategies;
Y
Yan Chunwei 已提交
771

Y
Yan Chunwei 已提交
772 773 774
  for (int sort_kind = 0; sort_kind < 2; sort_kind++) {
    if (argument->static_memory_optim()) {
      // This strategy only make scene in static memory optimize.
Y
Yan Chunwei 已提交
775 776 777 778 779 780 781 782
      strategies.emplace_back([&, sort_kind] {
        auto clustered_vars_by_batch_size =
            AnalysisBatchShapesByBatchSize(batches);
        MemoryAllocation allocation;
        MakeReusePlan(clustered_vars_by_batch_size, var_batch_ave_size,
                      space_table, &reuse_table, sort_kind, &allocation);
        return allocation;
      });
Y
Yan Chunwei 已提交
783
    }
Y
Yan Chunwei 已提交
784

Y
Yan Chunwei 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
    strategies.emplace_back([&, sort_kind] {
      auto clustered_vars_by_ave_size =
          AnalysisBatchShapesBySimilarSize(space_table, batches, cluster_size);
      MemoryAllocation allocation;
      MakeReusePlan(clustered_vars_by_ave_size, var_batch_ave_size, space_table,
                    &reuse_table, sort_kind, &allocation);
      return allocation;
    });

    strategies.emplace_back([&, sort_kind] {
      auto clustered_vars_by_ave_size =
          AnalysisBatchShapesBySimilarSize(space_table, batches, cluster_size1);
      MemoryAllocation allocation;
      MakeReusePlan(clustered_vars_by_ave_size, var_batch_ave_size, space_table,
                    &reuse_table, sort_kind, &allocation);
      return allocation;
    });

    strategies.emplace_back([&, sort_kind] {
      auto clustered_vars_by_ave_size = AnalysisBatchShapesBySimilarSize(
          space_table, batches,
          std::numeric_limits<int>::max());  // no intervals
      MemoryAllocation allocation;
      MakeReusePlan(clustered_vars_by_ave_size, var_batch_ave_size, space_table,
                    &reuse_table, sort_kind, &allocation);
      return allocation;
    });
  }
Y
Yan Chunwei 已提交
813

Y
Yan Chunwei 已提交
814
  std::function<MemoryAllocation()>* best_strategy{nullptr};
Y
Yan Chunwei 已提交
815

Y
Yan Chunwei 已提交
816 817 818 819 820 821 822 823
  // Try all strategies to get the best result.
  for (auto& strategy : strategies) {
    auto allocation = strategy();
    string::PrettyLogDetail("--- get strategy saving %f memory for workspace",
                            allocation.GetSavingRatio());
    if (allocation.GetSavingRatio() > max_saving_ratio) {
      max_saving_ratio = allocation.GetSavingRatio();
      best_strategy = &strategy;
Y
Yan Chunwei 已提交
824
    }
Y
Yan Chunwei 已提交
825 826 827 828 829 830
  }
  if (!best_strategy) {
    LOG(ERROR) << "This model makes poor memory optimize, skip memory optimize";
    return;
  }
  auto memory_allocation = (*best_strategy)();
Y
Yan Chunwei 已提交
831

Y
Yan Chunwei 已提交
832 833 834
  string::PrettyLogInfo(
      "--- Saved %.2f%s memory for workspace(temporary variables)",
      memory_allocation.GetSavingRatio() * 100, "%");
Y
Yan Chunwei 已提交
835

Y
Yan Chunwei 已提交
836 837 838 839 840 841 842 843
  argument->main_graph().Set(framework::ir::kGraphToProgramVarsToRemove,
                             new std::unordered_set<std::string>);
  auto& vars2remove =
      argument->main_graph().Get<std::unordered_set<std::string>>(
          framework::ir::kGraphToProgramVarsToRemove);

  PerformReusePlan(reuse_table, memory_allocation.sort_kind, &vars2remove);
  argument->SetMemoryOptimSortKind(memory_allocation.sort_kind);
Y
Yan Chunwei 已提交
844 845 846 847 848 849 850 851
}

float MemoryOptimizePass::MemoryAllocation::GetSavingRatio() const {
  return (saved / 1024.) / (allocated / 1024. + saved / 1024.);
}
}  // namespace analysis
}  // namespace inference
}  // namespace paddle