planner.py 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import time
import random
import logging
from functools import reduce
from itertools import chain, product
from collections import OrderedDict

import numpy as np

import paddle
import paddle.distributed.auto_parallel as auto
from .cost_model import estimate_cost
from .dist_op import DistributedOperator
from .process_group import _g_process_group_map
from .process_group import ProcessGroup, get_process_group
from .completion import is_elementwise_like_op
from .operators.common import get_distributed_operator_impl_container
from .utils import update_op_dims_mapping_by_default_dist_impl
from .utils import update_op_dims_mapping_by_elementwise_like_dist_impl
from .dist_context import DistributedContext, DistributedOperatorContext
from .dist_attribute import OperatorDistributedAttribute, TensorDistributedAttribute

paddle.enable_static()
paddle.seed(123)
random.seed(123)
np.random.seed(123)


class PlanFilter:
    @staticmethod
    def check_dims_mapping_for_tensor(process_mesh_topology, tensor_shape,
                                      dims_mapping):
        valid = True
        assert len(tensor_shape) == len(dims_mapping)

        for idx, dim_mapping in enumerate(dims_mapping):
            if dim_mapping != -1:
                if tensor_shape[idx] % process_mesh_topology[
                        dim_mapping] != 0 or dims_mapping.count(
                            dim_mapping) > 1:
                    valid = False
            if dim_mapping != -1 and process_mesh_topology[0] == 1:
                valid = False

        return valid

    @staticmethod
    def check_dims_mapping_for_op(op, op_dist_attr, vars):
        process_mesh = op_dist_attr.process_mesh
        assert process_mesh is not None, "The process mesh should not be None."
        for var_name in op.input_arg_names:
            dims_mapping = op_dist_attr.get_input_dims_mapping(var_name)
            if not PlanFilter.check_dims_mapping_for_tensor(
                    process_mesh.topology, vars[var_name].shape, dims_mapping):
                return False
            if vars[var_name].is_data and len(dims_mapping) > 1:
                for dim in dims_mapping[1:]:
                    if dim != -1:
                        return False

        for var_name in op.output_arg_names:
            dims_mapping = op_dist_attr.get_output_dims_mapping(var_name)
            if not PlanFilter.check_dims_mapping_for_tensor(
                    process_mesh.topology, vars[var_name].shape, dims_mapping):
                return False

        return True

    @staticmethod
    def check_dims_mapping_for_special_op(op, op_dist_attr, vars):
        if op.type == "layer_norm":
            bias_dims_mapping = op_dist_attr.get_input_dims_mapping(
                op.input("Bias")[0])
            scale_dims_mapping = op_dist_attr.get_input_dims_mapping(
                op.input("Scale")[0])
            x_dims_mapping = op_dist_attr.get_input_dims_mapping(
                op.input("X")[0])
            mean_dims_mapping = op_dist_attr.get_output_dims_mapping(
                op.output("Mean")[0])
            variance_dims_mapping = op_dist_attr.get_output_dims_mapping(
                op.output("Variance")[0])
            y_dims_mapping = op_dist_attr.get_output_dims_mapping(
                op.output("Y")[0])
            if x_dims_mapping != y_dims_mapping:
                return False

            if scale_dims_mapping[0] != x_dims_mapping[-1]:
                return False

            if bias_dims_mapping[0] != y_dims_mapping[-1]:
                return False

            if mean_dims_mapping[0] != x_dims_mapping[0]:
                return False

            if variance_dims_mapping[0] != x_dims_mapping[0]:
                return False

        return True


class PlanSpace:
    not_enum_ops = ["create_py_reader", "create_double_buffer_reader", "read"]
    special_vars = [
        "lod_tensor_blocking_queue_0", "create_py_reader_0", "double_buffer_0"
    ]

    @staticmethod
    def _enum_dims_mapping(process_mesh_topology, visited, path, depth, res,
                           tensor_shape):
        """Enumerate dims mapping of tensor by the given process_mesh_topology"""
        nums = list(range(-1, len(process_mesh_topology)))
        if depth == len(tensor_shape):
            valid = True
            for idx, item in enumerate(path):
                if item != -1:
                    if tensor_shape[idx] % process_mesh_topology[
                            item] != 0 or path.count(item) > 1:
                        valid = False
            if valid:
                res.append(copy.deepcopy(path))
            return

        for i in range(len(nums)):
            if not visited[i]:
                if i != 0:
                    visited[i] = True
                path.append(nums[i])
                PlanSpace._enum_dims_mapping(process_mesh_topology, visited,
                                             path, depth + 1, res, tensor_shape)
                visited[i] = False
                path.pop()

    @staticmethod
    def enum_process_mesh_topology(processes):
        """Enumerate all process meshes with the given processes."""
        assert processes >= 1, "The processes must be number and greater than 0."
        # compute divisors
        divisors = []
        for i in range(1, processes + 1):
            if processes % i == 0:
                divisors.append(i)

        # compute valid process mesh
        results = []
        for i in range(len(divisors) - 1, 0, -1):
            result = []
            result.append(divisors[i])
            if i == len(divisors) - 1:
                results.append(copy.deepcopy(result))
                continue

            j = 1
            while j < len(divisors):
                if len(result) == 1:
                    result.append(divisors[j])
                elif len(result) == 2:
                    if processes % (result[0] * result[1]) == 0:
                        if processes // (result[0] * result[1]) == 1:
                            results.append(copy.deepcopy(result))
                            break
                        else:
                            result.append(processes // (result[0] * result[1]))
                            results.append(copy.deepcopy(result))
                            result.pop(-1)
                            result.pop(-1)
                            j += 1
                    else:
                        if result[0] * result[1] < processes:
                            result.pop(-1)
                            j += 1
                        else:
                            break
        return results

    @staticmethod
    def _enum_valid_dist_attr_for_op(program, op, process_mesh):
        """Enumerate the valid distributed attribute for op based on the given process mesh."""
        vars = program.global_block().vars
        dims_mapping_dict = OrderedDict()
        op_valid_dist_attrs = []
        dist_op_impl_container = get_distributed_operator_impl_container(
            op.type)

        # enumerate all valid dims mapping of tensor when process mesh given
        for var_name in chain(op.input_arg_names, op.output_arg_names):
            visited = [
                False
                for _ in range(
                    len(list(range(-1, len(process_mesh.topology)))))
            ]
            depth = 0
            path = []
            dims_mapping_list = []
            PlanSpace._enum_dims_mapping(process_mesh.topology, visited, path,
                                         depth, dims_mapping_list,
                                         vars[var_name].shape)
            dims_mapping_dict[var_name] = copy.deepcopy(dims_mapping_list)

        # compose dims mapping
        composed_dims_mapping_list = list(
            product(
                *[dims_mapping_dict[key] for key in dims_mapping_dict.keys()]))
        for composed_dims_mapping in composed_dims_mapping_list:
            op_dist_attr = OperatorDistributedAttribute()
            op_dist_attr.process_mesh = process_mesh
            var_names = list(dims_mapping_dict.keys())

            for idx, dims_mapping in enumerate(composed_dims_mapping):
                if var_names[idx] in op.input_arg_names:
                    op_dist_attr.set_input_dims_mapping(var_names[idx],
                                                        dims_mapping)
                elif var_names[idx] in op.output_arg_names:
                    op_dist_attr.set_output_dims_mapping(var_names[idx],
                                                         dims_mapping)
                else:
                    raise ValueError(
                        "The {varname} is not input or output of op {op}.".
                        format(
                            varname='var_names[idx]', op='op'))

            dist_op = DistributedOperator(op, op_dist_attr)
            if dist_op_impl_container is None:
                if is_elementwise_like_op(op.type):
                    changed = True
                    valid = True
                    try:
                        changed = update_op_dims_mapping_by_elementwise_like_dist_impl(
                            dist_op)
                    except Exception as e:
                        valid = False
                    if valid and not changed:
                        if PlanFilter.check_dims_mapping_for_op(
                                op, dist_op.dist_attr, vars
                        ) and PlanFilter.check_dims_mapping_for_special_op(
                                op, dist_op.dist_attr, vars):
                            dist_op.dist_attr.impl_idx = -1
                            op_valid_dist_attrs.append(dist_op.dist_attr)
                    continue
                else:
                    changed = True
                    valid = True
                    try:
                        changed = update_op_dims_mapping_by_default_dist_impl(
                            dist_op)
                    except Exception as e:
                        valid = False
                    if valid and not changed:
                        if PlanFilter.check_dims_mapping_for_op(
                                op, dist_op.dist_attr, vars
                        ) and PlanFilter.check_dims_mapping_for_special_op(
                                op, dist_op.dist_attr, vars):
                            dist_op.dist_attr.impl_idx = -2
                            op_valid_dist_attrs.append(dist_op.dist_attr)
                    continue

            # if op has distributed implements, find all valid dist attr of this op
            impls = dist_op_impl_container.get_impls()
            for idx, impl in enumerate(impls):
                if impl.is_auto_compatible(dist_op):
                    if PlanFilter.check_dims_mapping_for_op(
                            op, dist_op.dist_attr, vars):
                        dist_op.dist_attr.impl_idx = idx
                        op_valid_dist_attrs.append(dist_op.dist_attr)

        # set default dist attr for some special ops whose distributed attributes can not be enumerated
        if not op_valid_dist_attrs:
            op_dist_attr = OperatorDistributedAttribute()
            op_dist_attr.process_mesh = process_mesh
            dist_op = DistributedOperator(op, op_dist_attr)
            for var_name in op.input_arg_names:
                op_dist_attr.set_input_dims_mapping(
                    vars[var_name], [-1 for i in vars[var_name].shape])
            for var_name in op.output_arg_names:
                op_dist_attr.set_output_dims_mapping(
                    vars[var_name], [-1 for i in vars[var_name].shape])
            dist_op.dist_attr.impl_idx = -1
            op_valid_dist_attrs.append(dist_op.dist_attr)

        return op_valid_dist_attrs

    @staticmethod
    def enum_valid_dist_attr_for_program(program,
                                         process_mesh_topology,
                                         is_pipeline=False):
        """Enumerate valid distributed attributes for all ops in program."""
        valid_dist_attr_dict = OrderedDict()
        ops = program.global_block().ops
        vars = program.global_block().vars

        processes = reduce(lambda x, y: x * y, process_mesh_topology)
        global_group = [i for i in range(processes)]
        global_process_mesh = None
        pipeline_process_meshes = None

        # in the pipeline mode, there are some process meshes
        if is_pipeline:
            pipeline_stages = process_mesh_topology[-1]
            op_count_per_stage = len(ops) // pipeline_stages
            if len(process_mesh_topology) > 1:
                process_mesh_shape = process_mesh_topology[:-1]
                per_process_mesh_group = processes // pipeline_stages
                pipeline_process_meshes = [auto.ProcessMesh(mesh=np.array(global_group[i*per_process_mesh_group: \
                (i+1)*per_process_mesh_group]).reshape(process_mesh_shape).tolist()) for i in range(pipeline_stages)]
            elif len(process_mesh_topology) == 1:
                pipeline_process_meshes = [
                    auto.ProcessMesh(mesh=[i]) for i in range(pipeline_stages)
                ]
        else:
            if len(process_mesh_topology) > 1:
                global_process_mesh = auto.ProcessMesh(mesh=np.array(
                    global_group).reshape(process_mesh_topology).tolist())
            else:
                global_process_mesh = auto.ProcessMesh(mesh=global_group)

        # enumerate valid distributed attribute for each op in the program
        for idx, op in enumerate(ops):
            op_valid_dist_attrs = None
            op_process_mesh = global_process_mesh
            pipeline_stage = -1
            if pipeline_process_meshes is not None:
                pipeline_stage = idx // op_count_per_stage if idx // op_count_per_stage < len(
                    pipeline_process_meshes) else idx // op_count_per_stage - 1
                if pipeline_stage >= len(pipeline_process_meshes):
                    pipeline_stage = len(pipeline_process_meshes) - 1
                op_process_mesh = pipeline_process_meshes[pipeline_stage]

            if op.type in PlanSpace.not_enum_ops:
                op_dist_attr = OperatorDistributedAttribute()
                op_dist_attr.process_mesh = op_process_mesh
                for var_name in op.input_arg_names:
                    if var_name in PlanSpace.special_vars:
                        op_dist_attr.set_input_dims_mapping(var_name, [])
                    else:
                        dims_mapping = [-1 for i in vars[var_name].shape]
                        op_dist_attr.set_input_dims_mapping(var_name,
                                                            dims_mapping)

                for var_name in op.output_arg_names:
                    if var_name in PlanSpace.special_vars:
                        op_dist_attr.set_output_dims_mapping(var_name, [])
                    else:
                        dims_mapping = [-1 for i in vars[var_name].shape]
                        op_dist_attr.set_output_dims_mapping(var_name,
                                                             dims_mapping)
                op_valid_dist_attrs = [op_dist_attr]
                pipeline_stage = 0 if pipeline_stage != -1 else pipeline_stage
            else:
                op_valid_dist_attrs = PlanSpace._enum_valid_dist_attr_for_op(
                    program, op, op_process_mesh)

            assert op_valid_dist_attrs is not None, "Enumerate {} valid distributed attribute failed.".format(
                op)
            valid_dist_attr_dict[op.desc.id(
            )] = [op_valid_dist_attrs, pipeline_stage]

        return valid_dist_attr_dict, pipeline_process_meshes, global_process_mesh