nets.py 25.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
M
minqiyang 已提交
16
import six
17
from . import layers
18
from .data_feeder import check_variable_and_dtype, convert_dtype
F
fengjiayi 已提交
19

20 21 22
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
23
    "glu",
24
    "scaled_dot_product_attention",
Q
qiaolongfei 已提交
25
    "img_conv_group",
26
]
D
dzhwinter 已提交
27

F
fengjiayi 已提交
28 29 30

def simple_img_conv_pool(input,
                         num_filters,
D
dzhwinter 已提交
31
                         filter_size,
F
fengjiayi 已提交
32 33
                         pool_size,
                         pool_stride,
C
chengduoZH 已提交
34
                         pool_padding=0,
C
chengduoZH 已提交
35
                         pool_type='max',
C
chengduoZH 已提交
36 37 38 39 40 41 42 43
                         global_pooling=False,
                         conv_stride=1,
                         conv_padding=0,
                         conv_dilation=1,
                         conv_groups=1,
                         param_attr=None,
                         bias_attr=None,
                         act=None,
X
Xin Pan 已提交
44
                         use_cudnn=True):
C
chengduoZH 已提交
45
    """
S
SunGaofeng 已提交
46
    The simple_img_conv_pool api is composed of :ref:`api_fluid_layers_conv2d` and :ref:`api_fluid_layers_pool2d` .
C
chengduoZH 已提交
47 48

    Args:
S
SunGaofeng 已提交
49 50
        input (Variable): 4-D Tensor, shape is [N, C, H, W], data type can be float32 or float64.
        num_filters(int): The number of filters. It is the same as the output channels.
C
chengduoZH 已提交
51 52 53
        filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise,
            the filter_size_H = filter_size_W = filter_size.
S
SunGaofeng 已提交
54
        pool_size (int|list|tuple): The pooling size of pool2d layer. If pool_size
C
chengduoZH 已提交
55 56
            is a list or tuple, it must contain two integers, (pool_size_H, pool_size_W).
            Otherwise, the pool_size_H = pool_size_W = pool_size.
S
SunGaofeng 已提交
57
        pool_stride (int|list|tuple): The pooling stride of pool2d layer. If pool_stride
C
chengduoZH 已提交
58 59
            is a list or tuple, it must contain two integers, (pooling_stride_H, pooling_stride_W).
            Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
S
SunGaofeng 已提交
60
        pool_padding (int|list|tuple): The padding of pool2d layer. If pool_padding is a list or
C
chengduoZH 已提交
61 62
            tuple, it must contain two integers, (pool_padding_H, pool_padding_W).
            Otherwise, the pool_padding_H = pool_padding_W = pool_padding. Default 0.
S
SunGaofeng 已提交
63
        pool_type (str): Pooling type can be :math:`max` for max-pooling or :math:`avg` for
C
chengduoZH 已提交
64 65 66
            average-pooling. Default :math:`max`.
        global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
            pool_size and pool_padding while be ignored. Default False
C
chengduo 已提交
67
        conv_stride (int|list|tuple): The stride size of the conv2d Layer. If stride is a
C
chengduoZH 已提交
68 69
            list or tuple, it must contain two integers, (conv_stride_H, conv_stride_W). Otherwise,
            the conv_stride_H = conv_stride_W = conv_stride. Default: conv_stride = 1.
C
chengduo 已提交
70
        conv_padding (int|list|tuple): The padding size of the conv2d Layer. If padding is
C
chengduoZH 已提交
71 72
            a list or  tuple, it must contain two integers, (conv_padding_H, conv_padding_W).
            Otherwise, the conv_padding_H = conv_padding_W = conv_padding. Default: conv_padding = 0.
C
chengduo 已提交
73
        conv_dilation (int|list|tuple): The dilation size of the conv2d Layer. If dilation is
C
chengduoZH 已提交
74 75
            a list or tuple, it must contain two integers, (conv_dilation_H, conv_dilation_W).
            Otherwise, the conv_dilation_H = conv_dilation_W = conv_dilation. Default: conv_dilation = 1.
C
chengduo 已提交
76
        conv_groups (int): The groups number of the conv2d Layer. According to grouped
C
chengduoZH 已提交
77 78 79
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`.
            Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        act (str): Activation type for conv2d, if it is set to None, activation is not
            appended. Default: None.
C
chengduoZH 已提交
94 95 96 97
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
S
SunGaofeng 已提交
98 99 100 101
        4-D Tensor, the result of input after conv2d and pool2d, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
102 103 104 105

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
106
            import paddle.fluid as fluid
S
SunGaofeng 已提交
107
            img = fluid.data(name='img', shape=[100, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
108 109 110 111 112 113 114
            conv_pool = fluid.nets.simple_img_conv_pool(input=img,
                                                        filter_size=5,
                                                        num_filters=20,
                                                        pool_size=2,
                                                        pool_stride=2,
                                                        act="relu")
    """
F
fengjiayi 已提交
115 116 117 118
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
C
chengduoZH 已提交
119 120 121 122
        stride=conv_stride,
        padding=conv_padding,
        dilation=conv_dilation,
        groups=conv_groups,
F
fengjiayi 已提交
123
        param_attr=param_attr,
C
chengduoZH 已提交
124
        bias_attr=bias_attr,
C
chengduoZH 已提交
125
        act=act,
X
Xin Pan 已提交
126
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
127 128 129 130

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
Q
Qiao Longfei 已提交
131
        pool_type=pool_type,
C
chengduoZH 已提交
132
        pool_stride=pool_stride,
C
chengduoZH 已提交
133 134
        pool_padding=pool_padding,
        global_pooling=global_pooling,
X
Xin Pan 已提交
135
        use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
136 137 138 139 140 141 142 143 144
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
F
fengjiayi 已提交
145
                   param_attr=None,
Q
Qiao Longfei 已提交
146
                   conv_with_batchnorm=False,
W
wanghaoshuang 已提交
147
                   conv_batchnorm_drop_rate=0.0,
Q
Qiao Longfei 已提交
148
                   pool_stride=1,
C
chengduoZH 已提交
149
                   pool_type="max",
X
Xin Pan 已提交
150
                   use_cudnn=True):
Q
Qiao Longfei 已提交
151
    """
C
chengduoZH 已提交
152 153 154 155 156 157
    The Image Convolution Group is composed of Convolution2d, BatchNorm, DropOut,
    and Pool2d. According to the input arguments, img_conv_group will do serials of
    computation for Input using Convolution2d, BatchNorm, DropOut, and pass the last
    result to Pool2d.

    Args:
L
lvmengsi 已提交
158
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type of input is float32 or float64.
C
chengduoZH 已提交
159 160
        conv_num_filter(list|tuple): Indicates the numbers of filter of this group.
        pool_size (int|list|tuple): The pooling size of Pool2d Layer. If pool_size
L
lvmengsi 已提交
161 162
            is a list or tuple, it must contain two integers, (pool_size_height, pool_size_width).
            Otherwise, the pool_size_height = pool_size_width = pool_size.
C
chengduoZH 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        conv_padding (int|list|tuple): The padding size of the Conv2d Layer. If padding is
            a list or tuple, its length must be equal to the length of conv_num_filter.
            Otherwise the conv_padding of all Conv2d Layers are the same. Default 1.
        conv_filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, its length must be equal to the length of conv_num_filter.
            Otherwise the conv_filter_size of all Conv2d Layers are the same. Default 3.
        conv_act (str): Activation type for Conv2d Layer that is not followed by BatchNorm.
            Default: None.
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        conv_with_batchnorm (bool|list): Indicates whether to use BatchNorm after Conv2d Layer.
            If conv_with_batchnorm is a list, its length must be equal to the length of
            conv_num_filter. Otherwise, conv_with_batchnorm indicates whether all the
            Conv2d Layer follows a BatchNorm. Default False.
        conv_batchnorm_drop_rate (float|list): Indicates the drop_rate of Dropout Layer
            after BatchNorm. If conv_batchnorm_drop_rate is a list, its length must be
            equal to the length of conv_num_filter. Otherwise, drop_rate of all Dropout
            Layers is conv_batchnorm_drop_rate. Default 0.0.
        pool_stride (int|list|tuple): The pooling stride of Pool2d layer. If pool_stride
            is a list or tuple, it must contain two integers, (pooling_stride_H,
            pooling_stride_W). Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
            Default 1.
        pool_type (str): Pooling type can be :math:`max` for max-pooling and :math:`avg` for
            average-pooling. Default :math:`max`.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
190 191
        A Variable holding Tensor representing the final result after serial computation using Convolution2d,
        BatchNorm, DropOut, and Pool2d, whose data type is the same with input.
C
chengduoZH 已提交
192 193 194 195

    Examples:
        .. code-block:: python

196
            import paddle.fluid as fluid
L
lvmengsi 已提交
197
            img = fluid.data(name='img', shape=[None, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
198 199 200 201 202 203 204
            conv_pool = fluid.nets.img_conv_group(input=img,
                                                  conv_padding=1,
                                                  conv_num_filter=[3, 3],
                                                  conv_filter_size=3,
                                                  conv_act="relu",
                                                  pool_size=2,
                                                  pool_stride=2)
Q
Qiao Longfei 已提交
205 206 207
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
208
        isinstance(conv_num_filter, tuple)
Q
Qiao Longfei 已提交
209 210 211 212 213

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
C
chengduoZH 已提交
214
            assert len(obj) == len(conv_num_filter)
Q
Qiao Longfei 已提交
215 216 217 218
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
219
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
220 221 222
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

M
minqiyang 已提交
223
    for i in six.moves.range(len(conv_num_filter)):
Q
Qiao Longfei 已提交
224 225 226 227 228 229 230 231 232
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
F
fengjiayi 已提交
233
            param_attr=param_attr[i],
C
chengduoZH 已提交
234
            act=local_conv_act,
X
Xin Pan 已提交
235
            use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
236 237

        if conv_with_batchnorm[i]:
K
Kaipeng Deng 已提交
238
            tmp = layers.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
239 240
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
241
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
242 243 244 245 246

    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
C
chengduoZH 已提交
247
        pool_stride=pool_stride,
X
Xin Pan 已提交
248
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
249
    return pool_out
D
dzhwinter 已提交
250 251 252 253 254


def sequence_conv_pool(input,
                       num_filters,
                       filter_size,
F
fengjiayi 已提交
255
                       param_attr=None,
256
                       act="sigmoid",
257 258
                       pool_type="max",
                       bias_attr=None):
C
chengduoZH 已提交
259
    """
S
SunGaofeng 已提交
260 261 262 263 264
    **This api takes input as an LoDTensor. If input is a Tensor, please use** 
    :ref:`api_fluid_nets_simple_img_conv_pool` **instead**

    The sequence_conv_pool is composed of :ref:`api_fluid_layers_sequence_conv` 
    and :ref:`api_fluid_layers_sequence_pool` .
C
chengduoZH 已提交
265 266

    Args:
S
SunGaofeng 已提交
267 268 269
        input (Variable): 2-D LoDTensor, the input of sequence_conv, 
            which supports variable-time length input sequence. 
            The underlying of input is a matrix with shape
C
chengduoZH 已提交
270
            (T, N), where T is the total time steps in this mini-batch and N is
S
SunGaofeng 已提交
271
            the input_hidden_size. The data type is float32 or float64.
C
chengduoZH 已提交
272 273
        num_filters(int): The number of filter.
        filter_size (int): The filter size.
S
SunGaofeng 已提交
274 275 276
        param_attr (ParamAttr): The parameters of the sequence_conv Layer. Default: None.
        act (str|None): Activation type for Sequence_conv Layer. 
                        If set to None, no activation will be applied. Default: "sigmoid".
C
chengduoZH 已提交
277 278 279
        pool_type (str): Pooling type can be :math:`max` for max-pooling, :math:`average` for
            average-pooling, :math:`sum` for sum-pooling, :math:`sqrt` for sqrt-pooling.
            Default :math:`max`.
280 281 282 283 284
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
285

S
SunGaofeng 已提交
286 287 288 289 290 291
    Returns:
        The final result after sequence_conv and sequence_pool. 
        It is a 2-D Tensor, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
292 293 294 295

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
296 297
            import paddle.fluid as fluid
            input_dim = 100 #len(word_dict)
C
chengduoZH 已提交
298 299
            emb_dim = 128
            hid_dim = 512
S
SunGaofeng 已提交
300
            data = fluid.data(name="words", shape=[None, 1], dtype="int64", lod_level=1)
C
chengduoZH 已提交
301 302 303 304 305 306 307
            emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
            seq_conv = fluid.nets.sequence_conv_pool(input=emb,
                                                     num_filters=hid_dim,
                                                     filter_size=3,
                                                     act="tanh",
                                                     pool_type="sqrt")
    """
D
dzhwinter 已提交
308 309 310 311
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
312
        param_attr=param_attr,
313
        bias_attr=bias_attr,
314
        act=act)
D
dzhwinter 已提交
315

316
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
317
    return pool_out
G
guosheng 已提交
318 319 320 321


def glu(input, dim=-1):
    """
Y
Yibing Liu 已提交
322 323 324
    The Gated Linear Units(GLU) composed by :ref:`api_fluid_layers_split` , 
    :ref:`api_fluid_layers_sigmoid`  and :ref:`api_fluid_layers_elementwise_mul` . 
    Specifically, GLU will plit the input into two equal-sized parts,
C
chengduoZH 已提交
325
    :math:`a` and :math:`b`, along the given dimension and then compute as
G
guosheng 已提交
326
    following:
G
guosheng 已提交
327 328 329 330 331

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

Y
ying 已提交
332
    Refer to `Language Modeling with Gated Convolutional Networks
G
guosheng 已提交
333
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
Y
ying 已提交
334

G
guosheng 已提交
335
    Args:
Y
Yibing Liu 已提交
336 337 338 339
        input (Variable): The input variable which is a Tensor or LoDTensor. 
                          The supported data types include float32, float64 
                          and float16 (only for GPU).
        dim (int, optional): The dimension along which to split. If :math:`dim < 0`, the
C
chengduoZH 已提交
340
            dimension to split along is :math:`rank(input) + dim`. Default -1.
G
guosheng 已提交
341 342

    Returns:
Y
Yibing Liu 已提交
343
        Variable: Variable with half the size and same data type of input.
G
guosheng 已提交
344 345 346 347

    Examples:
        .. code-block:: python

348
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
349
            data = fluid.data(
Y
Yibing Liu 已提交
350 351 352
                name="words", shape=[-1, 6, 3, 9], dtype="float32")
            # shape of output: [-1, 3, 3, 9]
            output = fluid.nets.glu(input=data, dim=1)
G
guosheng 已提交
353 354 355
    """

    a, b = layers.split(input, num_or_sections=2, dim=dim)
G
guosheng 已提交
356 357
    act_b = layers.sigmoid(x=b)
    out = layers.elementwise_mul(x=a, y=act_b)
G
guosheng 已提交
358
    return out
359 360


Y
ying 已提交
361 362 363
def scaled_dot_product_attention(queries,
                                 keys,
                                 values,
Y
ying 已提交
364
                                 num_heads=1,
Y
ying 已提交
365
                                 dropout_rate=0.):
366
    """
G
Guo Sheng 已提交
367
    This interface Multi-Head Attention using scaled dot product.
368
    Attention mechanism can be seen as mapping a query and a set of key-value
G
Guo Sheng 已提交
369 370 371
    pairs to an output. Multi-Head Attention performs attention using multi-head
    parallel, and the inputs of attention would be transformed by linear projection.
    The formula is as follows:
Y
ying 已提交
372

G
Guo Sheng 已提交
373
    .. math::
374

G
Guo Sheng 已提交
375 376 377
        MultiHead(Q, K, V ) & = Concat(head_1, ..., head_h)

        where \  head_i & = Attention(QW_i^Q , KW_i^K , VW_i^V )
378

G
Guo Sheng 已提交
379
        Attention(Q, K, V) & = softmax (\\frac{QK^\mathrm{T}}{\sqrt{d_k}}) V
380

G
Guo Sheng 已提交
381 382 383 384 385 386
    For more details, please refer to `Attention Is All You Need
    <https://arxiv.org/pdf/1706.03762.pdf>`_ .

    Note that the implementation is adapted to batch, and all matrix multiplication
    in :math:`Attention(Q, K, V)` is batched matrix multiplication. Refer to
    :ref:`api_fluid_layers_matmul` .
387

Y
ying 已提交
388
    Args:
G
Guo Sheng 已提交
389 390 391 392 393 394 395 396 397 398 399 400
        queries (Variable): A 3-D Tensor with shape :math:`[N, L_q, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_q` for the sequence length
            of query, :math:`d_k \\times h` for the feature size of query, :math:`h` for
            head number. The data type should be float32 or float64.
        keys (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_k \\times h` for the feature size of key, :math:`h` for head
            number. The data type should be the same as ``queries`` .
        values (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_v \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_v \\times h` for the feature size of value, :math:`h` for head
            number. The data type should be the same as ``queries`` .
T
tianshuo78520a 已提交
401
        num_heads (int, optional): Indicate the number of head. If the number
G
Guo Sheng 已提交
402 403 404
            is 1, linear projection would not be performed on inputs. Default: 1.
        dropout_rate (float, optional): The rate to drop the attention weight.
            Default: 0.0, which means no dropout.
405 406

    Returns:
G
Guo Sheng 已提交
407 408 409 410 411
        Variable: A 3-D Tensor with shape :math:`[N, L_q, d_v \\times h]` , \
            where :math:`N` stands for batch size, :math:`L_q` for the sequence \
            length of query, :math:`d_v \\times h` for the feature size of value. \
            It has the same data type with inputs, representing the output of \
            Multi-Head Attention.
412

Y
ying 已提交
413
    Raises:
414
        TypeError: The dtype of inputs keys, values and queries should be the same.
T
tianshuo78520a 已提交
415
        ValueError: Inputs queries, keys and values should all be 3-D tensors.
G
Guo Sheng 已提交
416
        ValueError: The hidden size of queries and keys should be the same.
417
        ValueError: The max sequence length in value batch and in key batch should be the same.
G
Guo Sheng 已提交
418 419
        ValueError: he hidden size of keys must be divisible by the number of attention heads.
        ValueError: he hidden size of values must be divisible by the number of attention heads.
Y
ying 已提交
420

421 422 423
    Examples:
        .. code-block:: python

424 425
            import paddle.fluid as fluid

G
Guo Sheng 已提交
426 427 428
            queries = fluid.data(name="queries", shape=[3, 5, 9], dtype="float32")
            keys = fluid.data(name="keys", shape=[3, 6, 9], dtype="float32")
            values = fluid.data(name="values", shape=[3, 6, 10], dtype="float32")
C
chengduoZH 已提交
429
            contexts = fluid.nets.scaled_dot_product_attention(queries, keys, values)
Y
ying 已提交
430
            contexts.shape  # [3, 5, 10]
431
    """
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    check_variable_and_dtype(queries, 'queries', ['float32', 'float64'],
                             "scaled_dot_product_attention")
    check_variable_and_dtype(keys, 'keys', ['float32', 'float64'],
                             "scaled_dot_product_attention")
    check_variable_and_dtype(values, 'values', ['float32', 'float64'],
                             "scaled_dot_product_attention")

    if not (queries.dtype == keys.dtype == values.dtype):
        raise TypeError(
            "The dtype of keys, values and queries should be the same."
            "But received queries.dtype = %s, "
            " keys.dtype = %s, values.dtype) = %s." %
            (convert_dtype(queries.dtype), convert_dtype(keys.dtype),
             convert_dtype(values.dtype)))

Y
ying 已提交
447 448
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
449 450 451 452
            "Inputs queries, keys and values should all be 3-D tensors."
            "But received len(queries.shape) = %d, "
            "len(keys.shape) = %d, len(values.shape) = %d." %
            (len(queries.shape), len(keys.shape), len(values.shape)))
Y
ying 已提交
453 454 455

    if queries.shape[-1] != keys.shape[-1]:
        raise ValueError(
456 457 458
            "The hidden size of queries and keys should be the same."
            "But received queries' hidden size = %d and keys' hidden size = %d."
            % (queries.shape[-1], keys.shape[-1]))
Y
ying 已提交
459 460
    if keys.shape[-2] != values.shape[-2]:
        raise ValueError(
461 462 463
            "The max sequence length in value batch and in key batch "
            "should be the same. But received max sequence length in value batch "
            "= %d, in key batch = %d." % (values.shape[-2], keys.shape[-2]))
Y
ying 已提交
464 465 466 467 468 469 470 471 472
    if keys.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of keys (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (keys.shape[-1], num_heads))
    if values.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of values (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (values.shape[-1], num_heads))

Y
ying 已提交
473
    def __compute_qkv(queries, keys, values, num_heads):
Y
ying 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        """
        Add linear projection to queries, keys, and values.

        Args:
            queries(Tensor): a 3-D input Tensor.
            keys(Tensor): a 3-D input Tensor.
            values(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads. Linearly project the inputs
                            ONLY when num_heads > 1.

        Returns:
            Tensor: linearly projected output Tensors: queries', keys' and
                    values'. They have the same shapes with queries, keys and
                    values.
        """

Y
ying 已提交
490 491 492 493 494 495 496 497
        if num_heads == 1:
            return queries, keys, values

        q = layers.fc(input=queries, size=queries.shape[-1], num_flatten_dims=2)
        k = layers.fc(input=keys, size=keys.shape[-1], num_flatten_dims=2)
        v = layers.fc(input=values, size=values.shape[-1], num_flatten_dims=2)
        return q, k, v

Y
ying 已提交
498 499
    def __split_heads(x, num_heads):
        """
T
tianshuo78520a 已提交
500
        Reshape the last dimension of input tensor x so that it becomes two
Y
ying 已提交
501 502 503
        dimensions.

        Args:
Y
ying 已提交
504 505
            x(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads.
Y
ying 已提交
506 507

        Returns:
Y
ying 已提交
508 509
            Tensor: a Tensor with shape [..., n, m/num_heads], where m is size
                    of the last dimension of x.
Y
ying 已提交
510
        """
Y
ying 已提交
511 512
        if num_heads == 1:
            return x
513

Y
ying 已提交
514
        hidden_size = x.shape[-1]
515 516 517
        # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
        # into a 4-D output:
        # [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
Y
ying 已提交
518
        reshaped = layers.reshape(
519 520
            x=x,
            shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads])
521

T
tianshuo78520a 已提交
522
        # permute the dimensions into:
523 524 525 526
        # [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
Y
ying 已提交
527
        """
T
tianshuo78520a 已提交
528
        Reshape the last two dimensions of input tensor x so that it becomes
Y
ying 已提交
529 530 531 532 533 534 535 536 537 538 539
        one dimension.

        Args:
            x(Tensor): a 4-D input Tensor with shape
                       [bs, num_heads, max_sequence_length, hidden_dim].

        Returns:
            Tensor: a Tensor with shape
                    [bs, max_sequence_length, num_heads * hidden_dim].
        """

Y
ying 已提交
540
        if len(x.shape) == 3: return x
541 542 543
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

Y
ying 已提交
544
        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
Y
ying 已提交
545
        return layers.reshape(
546
            x=trans_x,
547 548 549 550 551
            shape=list(
                map(int, [
                    trans_x.shape[0], trans_x.shape[1], trans_x.shape[2] *
                    trans_x.shape[3]
                ])))
552

Y
ying 已提交
553 554 555 556 557
    q, k, v = __compute_qkv(queries, keys, values, num_heads)

    q = __split_heads(q, num_heads)
    k = __split_heads(k, num_heads)
    v = __split_heads(v, num_heads)
Y
ying 已提交
558 559

    key_dim_per_head = keys.shape[-1] // num_heads
560
    scaled_q = layers.scale(x=q, scale=key_dim_per_head**-0.5)
561
    product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
Y
ying 已提交
562

Y
ying 已提交
563
    weights = layers.reshape(
564
        x=layers.reshape(
Y
ying 已提交
565
            x=product, shape=[-1, product.shape[-1]], act="softmax"),
566
        shape=product.shape)
Y
ying 已提交
567
    if dropout_rate:
G
guosheng 已提交
568 569
        weights = layers.dropout(
            weights, dropout_prob=dropout_rate, is_test=False)
Y
ying 已提交
570 571
    ctx_multiheads = layers.matmul(weights, v)
    return __combine_heads(ctx_multiheads)