role_maker.py 35.2 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xujiaqi01 已提交
14
"""Defination of Role Makers."""
D
dongdaxiang 已提交
15

T
tangwei12 已提交
16
from __future__ import print_function
17
from multiprocessing import Process, Manager
18
import paddle.fluid as fluid
X
xujiaqi01 已提交
19
import os
20
import time
21

T
tangwei12 已提交
22
__all__ = [
23
    'Role', 'RoleMakerBase', 'MPISymetricRoleMaker', 'UserDefinedRoleMaker',
X
xujiaqi01 已提交
24
    'UserDefinedCollectiveRoleMaker', 'PaddleCloudRoleMaker', 'GeneralRoleMaker'
T
tangwei12 已提交
25 26
]

27

T
tangwei12 已提交
28 29
class Role:
    WORKER = 1
30 31
    SERVER = 2

D
dongdaxiang 已提交
32 33

class RoleMakerBase(object):
34 35 36 37 38 39 40
    """
    RoleMakerBase is a base class for assigning a role to current process
    in distributed training.
    A paddle developer can implement RoleMakerBase to design a role maker
    for worker or pserver assignment.
    """

D
dongdaxiang 已提交
41
    def __init__(self):
T
tangwei12 已提交
42 43
        self._worker_endpoints = []
        self._server_endpoints = []
D
dongdaxiang 已提交
44
        self._role_is_generated = False
T
tangwei12 已提交
45 46
        self._role = None
        self._current_id = -1
D
dongdaxiang 已提交
47

T
tangwei12 已提交
48
    def is_worker(self):
49 50 51
        """
        return is_worker() of current process
        """
D
dongdaxiang 已提交
52 53
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
54
    def is_server(self):
55 56 57
        """
        return is_server() of current process
        """
D
dongdaxiang 已提交
58 59
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
60
    def is_first_worker(self):
61
        """
T
tangwei12 已提交
62 63 64 65
        Check whether the node is the first instance of worker.
        Returns:
            bool: True if this is the first node of worker,
                  False if not.
66
        """
T
tangwei12 已提交
67
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
68

69 70 71 72 73 74 75 76 77
    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker number
        """
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
78
    def worker_index(self):
79
        """
T
tangwei12 已提交
80 81 82 83
        Get current worker id.

        Returns:
            int: node id
84
        """
T
tangwei12 已提交
85
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
86

T
tangwei12 已提交
87
    def server_index(self):
88
        """
T
tangwei12 已提交
89 90 91 92
        Get current server id.

        Returns:
            int: node id
93
        """
T
tangwei12 已提交
94
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
95

T
tangwei12 已提交
96
    def get_trainer_endpoints(self):
97
        """
T
tangwei12 已提交
98
        return trainer endpoints
99
        """
T
tangwei12 已提交
100 101 102 103 104 105 106
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        return pserver endpoints
        """
        return self._server_endpoints
D
dongdaxiang 已提交
107

T
tangwei12 已提交
108 109 110 111 112
    def to_string(self):
        return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
            self._role, self._current_id, self._worker_endpoints,
            self._server_endpoints)

X
xujiaqi01 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        print("warning: RoleMakerBase does not have all gather.")
        return None

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        print("warning: RoleMakerBase does not have all reduce worker.")

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        print("warning: RoleMakerBase does not have barrier worker.")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        print("warning: RoleMakerBase does not have barrier all.")

D
dongdaxiang 已提交
150 151

class MPIRoleMaker(RoleMakerBase):
152 153 154 155 156
    """
    MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker
    mpi4py will be used if a developer inherits MPIRoleMaker
    """

D
dongdaxiang 已提交
157
    def __init__(self):
X
xujiaqi01 已提交
158
        """Init."""
X
xujiaqi01 已提交
159
        super(MPIRoleMaker, self).__init__()
D
dongdaxiang 已提交
160 161
        from mpi4py import MPI
        self.MPI = MPI
T
tangwei12 已提交
162 163
        self._comm = MPI.COMM_WORLD
        self._node_type_comm = None
D
dongdaxiang 已提交
164
        self._ips = None
T
tangwei12 已提交
165
        self._ip = None
D
dongdaxiang 已提交
166

167
    def _get_rank(self):
X
xujiaqi01 已提交
168
        """Return rank."""
D
dongdaxiang 已提交
169 170
        self._rank = self._comm.Get_rank()
        return self._rank
D
dongdaxiang 已提交
171

172
    def _get_size(self):
X
xujiaqi01 已提交
173
        """Return size."""
D
dongdaxiang 已提交
174 175
        self._size = self._comm.Get_size()
        return self._size
D
dongdaxiang 已提交
176

177
    def _all_gather(self, obj):
178 179 180
        """
        all_gather(obj) will call MPI's allgather function
        """
X
xjqbest 已提交
181
        self._barrier_all()
D
dongdaxiang 已提交
182
        return self._comm.allgather(obj)
D
dongdaxiang 已提交
183

X
xjqbest 已提交
184 185 186 187
    def _worker_gather(self, obj):
        """
        worker_gather(obj) will call MPI's allgather function
        """
T
tangwei12 已提交
188
        if self.is_worker():
D
dongdaxiang 已提交
189 190
            self._node_type_comm.barrier()
            return self._node_type_comm.allgather(obj)
X
xjqbest 已提交
191 192
        return None

193
    def _barrier_all(self):
194 195 196
        """
        barrier_all() will call MPI's barrier_all function
        """
D
dongdaxiang 已提交
197
        self._comm.barrier()
D
dongdaxiang 已提交
198

T
tangwei12 已提交
199 200 201 202
    def _finalize(self):
        """
        finalize the current MPI instance.
        """
203
        self.MPI.Finalize()
T
tangwei12 已提交
204

205
    def _get_ips(self):
206 207 208
        """
        collect current distributed job's ip list
        """
T
tangwei12 已提交
209 210
        if not self._ips:
            self._ips = self._comm.allgather(self.get_local_ip())
D
dongdaxiang 已提交
211
        return self._ips
D
dongdaxiang 已提交
212

T
tangwei12 已提交
213
    def get_local_ip(self):
X
xujiaqi01 已提交
214
        """Return get local ip."""
T
tangwei12 已提交
215 216 217 218 219 220 221 222 223
        import socket
        self._ip = socket.gethostbyname(socket.gethostname())
        return self._ip

    def generate_role(self):
        """
        generate_role() should be called to identify current process's role
        """
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
224 225 226


class MPISymetricRoleMaker(MPIRoleMaker):
227 228 229 230 231 232
    """
    MPISymetricRoleMaker is designed for worker and server assignment
    under MPI. Typically, a worker and a server node will be appointed
    on each physical node. This role maker can be only used under MPI.
    """

D
dongdaxiang 已提交
233
    def __init__(self):
X
xujiaqi01 已提交
234
        """Init."""
D
dongdaxiang 已提交
235
        super(MPISymetricRoleMaker, self).__init__()
D
dongdaxiang 已提交
236 237
        self._node_type = None
        self._proc_per_node = 2
G
guru4elephant 已提交
238
        self._pserver_rand_port = 0
D
dongdaxiang 已提交
239

240
    def _check_role_generation(self):
X
xujiaqi01 已提交
241
        """Check whether role has been generated."""
D
dongdaxiang 已提交
242
        if not self._role_is_generated:
T
tangwei12 已提交
243
            raise NameError("generate_role() should be called first")
244 245
        return True

X
xujiaqi01 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            print("warning: current role is not worker in all_reduce_worker")
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()
        else:
            print("warning: current role is not worker in barrier_worker")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        if not self._role_is_generated:
            self.generate_role()
        self._comm.barrier()

T
tangwei12 已提交
296
    def is_first_worker(self):
297 298 299 300
        """
        return whether current process is the first worker assigned by role maker
        """
        if self._check_role_generation():
T
tangwei12 已提交
301
            return self.is_worker() and 0 == self.worker_index()
302
        return False
D
dongdaxiang 已提交
303

G
guru4elephant 已提交
304
    def get_pserver_endpoints(self):
X
xujiaqi01 已提交
305 306 307 308 309 310
        """
        get pserver endpoints
        
        Returns:
            endpoints(list): pserver endpoints
        """
G
guru4elephant 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323
        if self._pserver_rand_port <= 0:
            import random
            random.seed(self._server_num())
            # port will be randomly generated from 60001 to 63999
            # random seed is server num so that all nodes will get
            # the same port
            self._pserver_rand_port = random.randint(60001, 64000)
        endpoints = [
            x + ":" + str(self._pserver_rand_port)
            for x in self._server_endpoints
        ]
        return endpoints

324 325 326
    def worker_num(self):
        return self._worker_num()

T
tangwei12 已提交
327
    def is_worker(self):
328 329 330 331
        """
        return whether current process is worker assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
332
            return self._node_type == 1
333
        return False
D
dongdaxiang 已提交
334

T
tangwei12 已提交
335
    def is_server(self):
336 337 338 339
        """
        return whether current process is server assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
340
            return self._node_type == 0
341
        return False
D
dongdaxiang 已提交
342

343
    def _worker_num(self):
344 345 346 347
        """
        return the current number of worker
        """
        if self._check_role_generation():
348
            return self._get_size() / self._proc_per_node
349
        return 0
D
dongdaxiang 已提交
350

351
    def _server_num(self):
352 353 354 355
        """
        return the current number of server
        """
        if self._check_role_generation():
G
guru4elephant 已提交
356 357 358 359
            return self._get_size() / self._proc_per_node
        else:
            self.generate_role()
            return self._get_size() / self._proc_per_node
D
dongdaxiang 已提交
360

T
tangwei12 已提交
361
    def worker_index(self):
362 363 364 365
        """
        return the index of worker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
366
            return self._rank / self._proc_per_node
G
guru4elephant 已提交
367 368 369
        else:
            self.generate_role()
            return self._get_size() / 2
D
dongdaxiang 已提交
370

T
tangwei12 已提交
371
    def server_index(self):
372 373 374 375
        """
        return the index of server
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
376
            return self._rank / self._proc_per_node
G
guru4elephant 已提交
377 378 379
        else:
            self.generate_role()
            return self._get_size() / self._proc_per_node
D
dongdaxiang 已提交
380

X
xujiaqi01 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if mode == "sum":
            mode = self.MPI.SUM
        elif mode == "max":
            mode = self.MPI.MAX
        elif mode == "min":
            mode = self.MPI.MIN
        else:
            raise ValueError("unknown mode: %s" % mode)
        self._node_type_comm.Allreduce(input, output, op=mode)

403
    def _barrier_worker(self):
404 405 406 407
        """
        barrier all workers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
408
            if self.is_worker():
D
dongdaxiang 已提交
409
                self._node_type_comm.barrier()
G
guru4elephant 已提交
410 411
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
412

413
    def _barrier_server(self):
414 415 416 417
        """
        barrier all servers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
418
            if self.is_server():
D
dongdaxiang 已提交
419
                self._node_type_comm.barrier()
G
guru4elephant 已提交
420 421
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
422

T
tangwei12 已提交
423
    def generate_role(self):
424 425 426
        """
        generate currently process's role
        """
D
dongdaxiang 已提交
427
        if not self._role_is_generated:
428
            # TODO(guru4elephant): only allow to be called once
429 430
            self._worker_endpoints = self._get_ips()[1::2]
            self._server_endpoints = self._get_ips()[::2]
431

D
dongdaxiang 已提交
432 433
            if 0 == self._get_rank() % self._proc_per_node % 2:
                self._node_type = 0
434
            else:
D
dongdaxiang 已提交
435 436 437
                self._node_type = 1
            self._node_type_comm = self._comm.Split(self._node_type)
            self._role_is_generated = True
G
guru4elephant 已提交
438 439
        else:
            raise Exception("You should check role generation first")
440 441


442
class PaddleCloudRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
443 444 445 446 447
    """
    role maker for paddle cloud,
    base class is RoleMakerBase
    """

448
    def __init__(self, is_collective=False):
449
        super(PaddleCloudRoleMaker, self).__init__()
450
        self._role_is_generated = False
451
        self._is_collective = is_collective
452 453

    def generate_role(self):
X
xujiaqi01 已提交
454
        """Generate role."""
455
        if not self._role_is_generated:
456
            if not self._is_collective:
T
tangwei12 已提交
457
                try:
C
Chengmo 已提交
458 459 460 461
                    # Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
                    # format: string(ip:port), eg. 127.0.0.1:6001
                    eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(
                        ",")
T
tangwei12 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
                    # note that, we usually assign the same port to different ips
                    # if we run parameter server training in local mode
                    # port should be different in environment variables

                    trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
                    training_role = os.environ["TRAINING_ROLE"]

                    if training_role not in ["TRAINER", "PSERVER"]:
                        raise ValueError(
                            "TRAINING_ROLE must be PSERVER or TRAINER")

                    if training_role == "TRAINER":
                        role = Role.WORKER
                        current_id = int(os.environ["PADDLE_TRAINER_ID"])
                    elif training_role == "PSERVER":
                        role = Role.SERVER
                        cur_ip = os.environ["POD_IP"]
C
Chengmo 已提交
479 480 481
                        curr_port = os.environ["PADDLE_PORT"]
                        curr_endpoint = ":".join([cur_ip, curr_port])
                        current_id = eplist.index(curr_endpoint)
T
tangwei12 已提交
482 483 484 485 486 487 488 489 490 491 492 493
                    else:
                        raise ValueError(
                            "TRAINING_ROLE must be PSERVER or TRAINER")
                except ValueError as ve:
                    raise ValueError(
                        "something wrong with PaddleCloud, please check environment"
                    )

                self._trainers_num = trainers_num
                self._server_endpoints = eplist
                self._role = role
                self._current_id = current_id
494
            else:
495 496 497 498 499 500
                self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
                self._training_role = os.getenv("PADDLE_TRAINING_ROLE",
                                                "TRAINER")
                assert (self._training_role == "TRAINER")
                self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
                self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
501 502 503 504
                assert self._worker_endpoints is not None, "can't find PADDLE_TRAINER_ENDPOINTS"
                self._worker_endpoints = self._worker_endpoints.split(",")
                self._trainers_num = len(self._worker_endpoints)

505 506
            self._role_is_generated = True

507 508 509 510 511
    def get_pserver_endpoints(self):
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

512 513 514
    def is_worker(self):
        if not self._role_is_generated:
            self.generate_role()
515 516 517
        return self._role == Role.WORKER

    def is_server(self):
518 519
        if not self._role_is_generated:
            self.generate_role()
520 521 522
        return self._role == Role.SERVER

    def is_first_worker(self):
523 524
        if not self._role_is_generated:
            self.generate_role()
525 526 527
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
528 529
        if not self._role_is_generated:
            self.generate_role()
530 531 532
        return self._current_id

    def server_index(self):
533 534
        if not self._role_is_generated:
            self.generate_role()
535 536 537
        return self._current_id

    def worker_num(self):
538 539
        if not self._role_is_generated:
            self.generate_role()
540
        return self._trainers_num
541 542


X
xujiaqi01 已提交
543 544 545
class GeneralRoleMaker(RoleMakerBase):
    """
    This role maker is for general use, you can set os.environ to customize:
T
tianshuo78520a 已提交
546 547
        PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, separated by ','
        PADDLE_TRAINER_ENDPOINTS     : all trainers' ip:port, separated by ','
X
xujiaqi01 已提交
548 549 550 551 552 553 554 555 556 557 558 559
        TRAINING_ROLE                : TRAINER or PSERVER
        PADDLE_TRAINER_ID            : current trainer id (only for trainer),
                                       it is index in PADDLE_TRAINER_ENDPOINTS
        PADDLE_PSERVER_ID            : current pserver id (only for pserver)
                                       it is index in PADDLE_PSERVERS_IP_PORT_LIST
    """

    def __init__(self, **kwargs):
        super(RoleMakerBase, self).__init__()
        self._role_is_generated = False
        self._hdfs_name = kwargs.get("hdfs_name", "")
        self._hdfs_ugi = kwargs.get("hdfs_ugi", "")
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
        self._hdfs_path = kwargs.get("path", "").rstrip("/")
        self._init_timeout_seconds = kwargs.get("init_timeout_seconds", 3600)
        self._run_timeout_seconds = kwargs.get("run_timeout_seconds", 9999999)
        ip_port = kwargs.get("http_ip_port", "")
        self._http_ip_port = []
        self._http_server = None
        # if ip_port is not empty, it will use http instead of hdfs
        if ip_port != "":
            self._http_ip_port = ip_port.split(":")
            # it's for communication between processes
            self._manager = Manager()
            # global dict to store status
            self._http_server_d = self._manager.dict()
            # set running status of http server
            self._http_server_d["running"] = False
X
xujiaqi01 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
        self._iface = self.__get_default_iface()
        # this environment variable can be empty
        self._prefix = os.getenv("SYS_JOB_ID", "")

    def generate_role(self):
        """
        generate role for general role maker
        """
        if not self._role_is_generated:
            eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(",")
            training_role = os.environ["TRAINING_ROLE"]
            worker_endpoints = os.environ["PADDLE_TRAINER_ENDPOINTS"].split(",")
            trainers_num = len(worker_endpoints)
            if training_role not in ["TRAINER", "PSERVER"]:
                raise ValueError("TRAINING_ROLE must be PSERVER or TRAINER")
590

X
xujiaqi01 已提交
591 592 593
            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
                if current_id == 0 and len(self._http_ip_port) != 0:
                    size_d = {
                        "trainer": len(worker_endpoints),
                        "pserver": len(eplist),
                        "all": len(worker_endpoints) + len(eplist)
                    }
                    # child process for http server
                    self._http_server = Process(
                        target=self.__start_kv_server,
                        args=(self._http_server_d, size_d))
                    self._http_server.daemon = True
                    # set running status to True
                    self._http_server_d["running"] = True
                    # start child process
                    self._http_server.start()
X
xujiaqi01 已提交
609 610
                self._node_type = 1
                self._cur_endpoint = worker_endpoints[current_id]
611
                gloo = fluid.core.Gloo()
612 613 614 615 616 617 618 619 620 621 622 623 624
                gloo.set_rank(current_id)
                gloo.set_size(len(worker_endpoints))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
                gloo.set_timeout_seconds(self._init_timeout_seconds,
                                         self._run_timeout_seconds)
                if len(self._http_ip_port) != 0:
                    gloo.set_http_store(self._http_ip_port[0],
                                        int(self._http_ip_port[1]), "trainer")
                else:
                    gloo.set_hdfs_store(self._hdfs_path + "/trainer",
                                        self._hdfs_name, self._hdfs_ugi)
                gloo.init()
X
xujiaqi01 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638
                self._node_type_comm = gloo
            elif training_role == "PSERVER":
                role = Role.SERVER
                if os.environ.get("PADDLE_PSERVER_ID") is not None:
                    current_id = int(os.environ["PADDLE_PSERVER_ID"])
                    cur_endpoint = eplist[current_id]
                else:
                    # this is for compatible with paddlecloud
                    cur_ip = os.environ["POD_IP"]
                    cur_port = os.environ["PADDLE_PORT"]
                    cur_endpoint = ":".join([cur_ip, cur_port])
                    current_id = eplist.index(cur_endpoint)
                self._node_type = 0
                self._cur_endpoint = cur_endpoint
639
                gloo = fluid.core.Gloo()
640 641 642 643 644 645 646 647 648 649 650 651 652
                gloo.set_rank(current_id)
                gloo.set_size(len(eplist))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
                gloo.set_timeout_seconds(self._init_timeout_seconds,
                                         self._run_timeout_seconds)
                if len(self._http_ip_port) != 0:
                    gloo.set_http_store(self._http_ip_port[0],
                                        int(self._http_ip_port[1]), "pserver")
                else:
                    gloo.set_hdfs_store(self._hdfs_path + "/pserver",
                                        self._hdfs_name, self._hdfs_ugi)
                gloo.init()
X
xujiaqi01 已提交
653 654
                self._node_type_comm = gloo

655
            gloo = fluid.core.Gloo()
X
xujiaqi01 已提交
656
            all_list = worker_endpoints + eplist
657 658 659 660 661 662 663 664 665 666 667 668 669
            gloo.set_rank(all_list.index(self._cur_endpoint))
            gloo.set_size(len(all_list))
            gloo.set_prefix(self._prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            if len(self._http_ip_port) != 0:
                gloo.set_http_store(self._http_ip_port[0],
                                    int(self._http_ip_port[1]), "all")
            else:
                gloo.set_hdfs_store(self._hdfs_path + "/all", self._hdfs_name,
                                    self._hdfs_ugi)
            gloo.init()
X
xujiaqi01 已提交
670 671 672 673 674 675 676 677
            self._all_comm = gloo
            self._trainers_num = trainers_num
            self._server_endpoints = eplist
            self._role = role
            self._current_id = current_id
            self._rank = all_list.index(self._cur_endpoint)
            self._size = len(all_list)
            self._worker_endpoints = worker_endpoints
678 679 680 681 682
            if self._http_server is not None:
                # set running status to False
                self._http_server_d["running"] = False
                # wait until child process exits
                self._http_server.join()
X
xujiaqi01 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
            self._role_is_generated = True

    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self.is_worker():
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        self._barrier_worker()

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        self._barrier_all()

    def get_local_endpoint(self):
        """
        get local endpoint of current process
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._cur_endpoint

    def get_trainer_endpoints(self):
        """
        get endpoint of all trainers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        get endpoint of all pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

    def is_worker(self):
        """
        whether current process is worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER

    def is_server(self):
        """
        whether current process is server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.SERVER

    def is_first_worker(self):
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
        """
        get index of current worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def server_index(self):
        """
        get index of current server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def worker_num(self):
        """
        retrun the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_num()

    def server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_num()

    def _barrier_worker(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()

    def _barrier_all(self):
        """
        barrier all workers and servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        self._all_comm.barrier()

    def _barrier_server(self):
        """
        barrier all servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_server():
            self._node_type_comm.barrier()

    def _worker_num(self):
        """
        return the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._trainers_num

    def _server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return len(self._server_endpoints)

    def _finalize(self):
        """Default do nothing."""
        pass

    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between all workers

        Args:
            input(list|numpy.array): array of one dim
            output(list|numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        input_list = [i for i in input]
        ans = self._node_type_comm.all_reduce(input_list, mode)
        for i in range(len(ans)):
            output[i] = ans[i]

    def _all_gather(self, obj):
        """
        gather between all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        self._barrier_all()
        return self._all_comm.all_gather(obj)

    def _worker_gather(self, obj):
        """
        gather between all workers
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            return None
        self._barrier_worker()
        return self._node_type_comm.all_gather(obj)

    def _get_rank(self):
        """
        get current rank in all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._rank

    def _get_size(self):
        """
        get total num of all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._size

    def __get_default_iface(self):
        """
        get default physical interface
        """
        default1 = self.__get_default_iface_from_gateway()
        default2 = self.__get_default_iface_from_interfaces()
        return default2 if default1 == "lo" else default1

    def __get_default_iface_from_gateway(self):
        """
        get default physical interface
        """
        import netifaces
        gateways = netifaces.gateways()
        if gateways.get(netifaces.AF_INET) != None:
            gateway = gateways[netifaces.AF_INET]
            if len(gateway) > 0 and len(gateway[0]) > 1:
                return gateway[0][1]
        return "lo"

    def __get_default_iface_from_interfaces(self):
        """
        get default physical interface
        """
        import netifaces
        for intf_name in netifaces.interfaces():
            addresses = netifaces.ifaddresses(intf_name)
            if netifaces.AF_INET in addresses:
                ipv4_addresses = addresses[netifaces.AF_INET]
                for ipv4_address in ipv4_addresses:
                    if 'broadcast' in ipv4_address:
                        return intf_name
        return "lo"

935 936 937 938 939 940 941 942 943 944
    def __start_kv_server(self, http_server_d, size_d):
        from paddle.fluid.incubate.fleet.utils.http_server import KVServer
        http_server = KVServer(int(self._http_ip_port[1]), size_d)
        http_server.start()
        wait_seconds = 5
        while http_server_d.get("running",
                                False) and not http_server.shoud_stop():
            time.sleep(wait_seconds)
        http_server.stop()

X
xujiaqi01 已提交
945

946
class UserDefinedRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
947 948 949 950 951 952
    """
    UserDefinedRoleMaker is designed for worker and server assignment
    under manual. Typically, a worker and a server node will be appointed
    on each physical node, It can be assign by user.
    """

953 954
    def __init__(self,
                 current_id=0,
T
tangwei12 已提交
955 956 957
                 role=Role.WORKER,
                 worker_num=0,
                 server_endpoints=None):
958 959
        super(UserDefinedRoleMaker, self).__init__()

960 961 962 963 964 965 966
        if not isinstance(server_endpoints, list):
            raise TypeError("server_endpoints must be as string list")
        elif len(server_endpoints) <= 0:
            raise ValueError(
                "the length of server_endpoints list must be greater than 0")
        elif len(server_endpoints) != len(set(server_endpoints)):
            raise ValueError("server_endpoints can't have duplicate elements")
967
        else:
968 969 970 971 972 973
            for server_endpoint in server_endpoints:
                if not isinstance(server_endpoint, str):
                    raise TypeError(
                        "every element in server_endpoints list must be as string"
                    )
            self._server_endpoints = server_endpoints
974

T
tangwei12 已提交
975
        if role != Role.WORKER and role != Role.SERVER:
976 977 978 979
            raise TypeError("role must be as Role")
        else:
            self._role = role

980 981 982 983 984 985 986 987 988 989 990 991 992
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
                raise ValueError(
                    "current_id must be greater than or equal to 0")
            elif self._role == Role.SERVER and current_id >= len(
                    server_endpoints):
                raise ValueError(
                    "if role is Role.SERVER, current_id must be less than or equal to len(server_endpoints) - 1"
                )
            self._current_id = current_id

993 994 995
        if not isinstance(worker_num, int):
            raise TypeError("worker_num must be as int")
        else:
996 997
            if worker_num <= 0:
                raise ValueError("worker_num must be greater than 0")
998 999
            self._worker_num = worker_num

1000 1001 1002
    def generate_role(self):
        self._role_is_generated = True

T
tangwei12 已提交
1003 1004 1005 1006 1007
    def is_worker(self):
        return self._role == Role.WORKER

    def is_server(self):
        return self._role == Role.SERVER
1008

T
tangwei12 已提交
1009 1010
    def is_first_worker(self):
        return self._role == Role.WORKER and self._current_id == 0
1011

T
tangwei12 已提交
1012 1013
    def worker_index(self):
        return self._current_id
1014

T
tangwei12 已提交
1015 1016
    def server_index(self):
        return self._current_id
1017 1018 1019

    def worker_num(self):
        return self._worker_num
1020 1021 1022


class UserDefinedCollectiveRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
1023 1024 1025 1026 1027
    """
    UserDefinedCollectiveRoleMaker is designed for worker assignment
    under manual for collective mode.
    """

1028 1029 1030
    def __init__(self, current_id=0, worker_endpoints=None):
        super(UserDefinedCollectiveRoleMaker, self).__init__()

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        if not isinstance(worker_endpoints, list):
            raise TypeError("worker_endpoints must be as string list")
        elif len(worker_endpoints) <= 0:
            raise ValueError(
                "the length of worker_endpoints list must be greater than 0")
        elif len(worker_endpoints) != len(set(worker_endpoints)):
            raise ValueError("worker_endpoints can't have duplicate elements")
        else:
            for worker_endpoint in worker_endpoints:
                if not isinstance(worker_endpoint, str):
                    raise TypeError(
                        "every element in worker_endpoints list must be as string"
                    )
            self._worker_endpoints = worker_endpoints

1046 1047 1048 1049
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
1050 1051 1052 1053 1054 1055
                raise ValueError(
                    "current_id must be greater than or equal to 0")
            elif current_id >= len(worker_endpoints):
                raise ValueError(
                    "current_id must be less than or equal to len(worker_endpoints) - 1"
                )
1056 1057 1058 1059
            self._current_id = current_id

        self._worker_num = len(self._worker_endpoints)

1060 1061 1062
    def generate_role(self):
        self._role_is_generated = True

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
    def is_worker(self):
        return True

    def is_first_worker(self):
        return self._current_id == 0

    def worker_index(self):
        return self._current_id

    def worker_num(self):
        return self._worker_num