test_reduce_op.py 22.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
guosheng 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci
20
import paddle
21 22 23
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
24
from paddle.fluid.framework import convert_np_dtype_to_dtype_
G
guosheng 已提交
25 26


27
class TestSumOp(OpTest):
G
guosheng 已提交
28
    def setUp(self):
29
        self.op_type = "reduce_sum"
30
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
31
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestSumOp5D(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((1, 2, 5, 6, 10)).astype("float64")
        }
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestSumOp6D(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((1, 1, 2, 5, 6, 10)).astype("float64")
        }
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
G
guosheng 已提交
62

63 64
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
65

66 67
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
68 69


70 71 72
class TestMeanOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
73
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
W
whs 已提交
74 75 76 77
        self.attrs = {'dim': [1]}
        self.outputs = {
            'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
78

79 80
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
81

82 83
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
84 85


86 87 88
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
89 90
class TestMaxOp(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
91 92

    def setUp(self):
93
        self.op_type = "reduce_max"
94
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
95 96 97 98
        self.attrs = {'dim': [-1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }
99 100 101

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
102 103


104 105 106
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
107 108
class TestMinOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
109

110 111
    def setUp(self):
        self.op_type = "reduce_min"
112
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
113 114 115 116
        self.attrs = {'dim': [2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
117

118 119
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
120 121


122 123 124 125 126 127 128 129 130 131 132 133 134
class TestProdOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].prod(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


Z
zhoukunsheng 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
class TestAllOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].all()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
        self.check_output()


class TestAllOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1]}
        self.outputs = {'Out': self.inputs['X'].all(axis=1)}

    def test_check_output(self):
        self.check_output()


class TestAllOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].all(axis=1), axis=1)
        }

    def test_check_output(self):
        self.check_output()


171 172 173 174 175 176 177 178 179 180 181 182
class TestAllOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_all_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.reduce_all, input1)
            # The input dtype of reduce_all_op must be bool.
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.reduce_all, input2)


Z
zhoukunsheng 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
class TestAnyOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].any()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
        self.check_output()


class TestAnyOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1]}
        self.outputs = {'Out': self.inputs['X'].any(axis=1)}

    def test_check_output(self):
        self.check_output()


class TestAnyOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].any(axis=1), axis=1)
        }

    def test_check_output(self):
        self.check_output()


219 220 221 222 223 224 225 226 227 228 229 230
class TestAnyOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_any_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.reduce_any, input1)
            # The input dtype of reduce_any_op must be bool.
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.reduce_any, input2)


Q
qiaolongfei 已提交
231
class Test1DReduce(OpTest):
G
guosheng 已提交
232
    def setUp(self):
233
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
234
        self.inputs = {'X': np.random.random(120).astype("float64")}
Q
qiaolongfei 已提交
235
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
236 237 238

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
239

240 241
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
242 243


Q
qiaolongfei 已提交
244
class Test2DReduce0(Test1DReduce):
G
guosheng 已提交
245
    def setUp(self):
246
        self.op_type = "reduce_sum"
Q
qiaolongfei 已提交
247 248
        self.attrs = {'dim': [0]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
249 250 251
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}


Q
qiaolongfei 已提交
252 253 254 255 256
class Test2DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
Q
qiaolongfei 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce0(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce2(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [-2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce3(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1, 2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
300 301


Q
qiaolongfei 已提交
302 303 304 305
class TestKeepDimReduce(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
Q
qiaolongfei 已提交
306
        self.attrs = {'dim': [1], 'keep_dim': True}
Q
qiaolongfei 已提交
307 308 309 310 311 312 313
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=self.attrs['keep_dim'])
        }


class TestReduceAll(Test1DReduce):
314 315
    def setUp(self):
        self.op_type = "reduce_sum"
316
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
317 318 319 320
        self.attrs = {'reduce_all': True}
        self.outputs = {'Out': self.inputs['X'].sum()}


W
whs 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
## reduction in multi dims
class TestReduceMeanOpMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {'Out': self.inputs['X'].mean(axis=(1, 2))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


336 337 338
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
class TestReduceMaxOpMultiAxises(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_max"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


354 355 356
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
class TestReduceMinOpMultiAxises(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


class TestKeepDimReduceSumMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1], 'keep_dim': True}
        self.outputs = {
            'Out':
            self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


389 390 391
class TestReduceSumWithDimOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
392
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
        self.attrs = {'dim': [1, 2], 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceSumWithNumelOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
409
        self.inputs = {'X': np.random.random((100, 1)).astype("float64")}
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
        self.attrs = {'dim': [1], 'keep_dim': False}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=False)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceMeanWithDimOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
Z
zhupengyang 已提交
426
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        self.attrs = {'dim': [1], 'keep_dim': False}
        self.outputs = {
            'Out': self.inputs['X'].mean(
                axis=tuple(self.attrs['dim']), keepdims=False)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceMeanWithNumelOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
Z
zhupengyang 已提交
443
        self.inputs = {'X': np.random.random((100, 1)).astype("float64")}
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].mean(
                axis=tuple(self.attrs['dim']), keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceAll(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
460
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
461 462 463 464 465 466 467 468 469 470
        self.attrs = {'reduce_all': True, 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum()}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


471 472 473
class Test1DReduceWithAxes1(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
474
        self.inputs = {'X': np.random.random(100).astype("float64")}
475 476 477 478 479 480 481 482 483 484
        self.attrs = {'dim': [0], 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
class TestReduceWithDtype(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum().astype('float64')}
        self.attrs = {'reduce_all': True}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceWithDtype1(TestReduceWithDtype):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=1)}
        self.attrs = {'dim': [1]}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })


class TestReduceWithDtype2(TestReduceWithDtype):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=1, keepdims=True)}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })


527
class TestReduceSumOpError(unittest.TestCase):
528 529 530 531 532 533 534 535 536 537 538
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_sum_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x1)
            # The input dtype of reduce_sum_op  must be float32 or float64 or int32 or int64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x2)


539
class TestReduceMeanOpError(unittest.TestCase):
540 541 542 543 544 545 546 547 548 549 550
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_mean_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.reduce_mean, x1)
            # The input dtype of reduce_mean_op  must be float32 or float64 or int32 or int64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.reduce_mean, x2)


551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
class API_TestSumOpError(unittest.TestCase):
    def test_errors(self):
        def test_dtype1():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data(name="data", shape=[10], dtype="float32")
                paddle.sum(data, dtype="int32")

        self.assertRaises(ValueError, test_dtype1)

        def test_dtype2():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data(name="data", shape=[10], dtype="float32")
                paddle.sum(data, dtype="float32")

        self.assertRaises(ValueError, test_dtype2)

        def test_dtype3():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data(name="data", shape=[10], dtype="int32")
                paddle.sum(data, dtype="bool")

        self.assertRaises(ValueError, test_dtype3)

        def test_dtype4():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data(name="data", shape=[10], dtype="int32")
                paddle.sum(data, dtype="int32")

        self.assertRaises(ValueError, test_dtype3)


class API_TestSumOp(unittest.TestCase):
583
    def test_static(self):
584 585
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.data("data", shape=[10, 10], dtype="float32")
586
            result_sum = paddle.sum(x=data, axis=1, dtype="float64")
587 588 589 590 591 592 593 594 595
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input_data = np.random.rand(10, 10).astype(np.float32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum])
        self.assertEqual(
            (res == np.sum(input_data.astype(np.float64), axis=1)).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.data("data", shape=[10, 10], dtype="int32")
596
            result_sum = paddle.sum(x=data, axis=1, dtype="int64")
597 598 599 600 601 602 603 604 605
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input_data = np.random.randint(10, size=(10, 10)).astype(np.int32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum])
        self.assertEqual(
            (res == np.sum(input_data.astype(np.int64), axis=1)).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.data("data", shape=[10, 10], dtype="int32")
606
            result_sum = paddle.sum(x=data, axis=1)
607 608 609 610 611 612 613 614
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input_data = np.random.randint(10, size=(10, 10)).astype(np.int32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum])
        self.assertEqual((res == np.sum(input_data, axis=1)).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.data("data", shape=[10, 10], dtype="int32")
615
            result_sum = paddle.sum(x=data, axis=1)
616 617 618 619 620 621
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input_data = np.random.randint(10, size=(10, 10)).astype(np.int32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum])
        self.assertEqual((res == np.sum(input_data, axis=1)).all(), True)

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_data = np.random.randint(10, size=(5, 5, 5)).astype(np.int32)
            data = fluid.data("data", shape=[5, 5, 5], dtype="int32")
            sum1 = paddle.sum(x=data, axis=[0, 1])
            sum2 = paddle.sum(x=data, axis=())

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            res1, res2 = exe.run(feed={"data": input_data},
                                 fetch_list=[sum1, sum2])

        self.assertEqual((res1 == np.sum(input_data, axis=(0, 1))).all(), True)
        self.assertEqual(
            (res2 == np.sum(input_data, axis=(0, 1, 2))).all(), True)

    def test_dygraph(self):
        np_x = np.random.random([2, 3, 4]).astype('int32')
639 640
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(np_x)
641 642 643 644 645 646 647 648 649
            out0 = paddle.sum(x).numpy()
            out1 = paddle.sum(x, axis=0).numpy()
            out2 = paddle.sum(x, axis=(0, 1)).numpy()
            out3 = paddle.sum(x, axis=(0, 1, 2)).numpy()

        self.assertTrue((out0 == np.sum(np_x, axis=(0, 1, 2))).all())
        self.assertTrue((out1 == np.sum(np_x, axis=0)).all())
        self.assertTrue((out2 == np.sum(np_x, axis=(0, 1))).all())
        self.assertTrue((out3 == np.sum(np_x, axis=(0, 1, 2))).all())
650 651


652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
class API_TestReduceMeanOp(unittest.TestCase):
    def test_static(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data("x", shape=[10, 10], dtype="float32")
            out = fluid.layers.reduce_mean(input=x, dim=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x_np = np.random.rand(10, 10).astype(np.float32)
            res = exe.run(feed={"x": x_np}, fetch_list=[out])
        self.assertEqual(np.allclose(res[0], np.mean(x_np, axis=1)), True)

    def test_dygraph(self):
        with fluid.dygraph.guard():
            x_np = np.random.rand(10, 10).astype(np.float32)
            x = fluid.dygraph.to_variable(x_np)
            out = fluid.layers.reduce_mean(input=x, dim=1)
        self.assertEqual(np.allclose(out.numpy(), np.mean(x_np, axis=1)), True)


G
guosheng 已提交
671 672
if __name__ == '__main__':
    unittest.main()