batch_norm_op.cc 33.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
Q
qingqing01 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17
#include <string>
Q
qingqing01 已提交
18
#include <unordered_map>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/data_layout.h"
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
23 24 25 26

namespace paddle {
namespace operators {

Q
qingqing01 已提交
27
void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
28 29 30 31 32 33 34
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "BatchNorm");

Q
qingqing01 已提交
35
  bool is_test = ctx->Attrs().Get<bool>("is_test");
36 37 38
  bool trainable_stats = ctx->Attrs().Get<bool>("trainable_statistics");
  bool test_mode = is_test && (!trainable_stats);
  if (!test_mode) {
39 40 41 42 43 44 45
    OP_INOUT_CHECK(ctx->HasOutput("MeanOut"), "Output", "MeanOut", "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("VarianceOut"), "Output", "VarianceOut",
                   "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("SavedMean"), "Output", "SavedMean",
                   "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("SavedVariance"), "Output", "SavedVariance",
                   "BatchNorm");
Q
Qiao Longfei 已提交
46
  }
K
Kexin Zhao 已提交
47

Q
qingqing01 已提交
48 49
  // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
  PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
50 51 52 53 54 55
                    platform::errors::InvalidArgument(
                        "Mean and MeanOut should share the same memory"));
  PADDLE_ENFORCE_EQ(
      ctx->Inputs("Variance")[0], ctx->Outputs("VarianceOut")[0],
      platform::errors::InvalidArgument(
          "Variance and VarianceOut should share the same memory"));
Q
qingqing01 已提交
56 57 58 59 60

  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));

61 62 63 64 65 66 67
  if (ctx->IsRuntime() && ctx->HasInput("MomentumTensor")) {
    auto mom = ctx->Inputs("MomentumTensor");
    PADDLE_ENFORCE_EQ(mom.size(), 1,
                      platform::errors::InvalidArgument(
                          "Input(MomentumTensor) size must be 1"));
  }

68 69
  PADDLE_ENFORCE_GE(
      x_dims.size(), 2,
K
Kaipeng Deng 已提交
70 71 72 73 74
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input "
          "X must greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
          x_dims, x_dims.size()));
75 76
  PADDLE_ENFORCE_LE(
      x_dims.size(), 5,
K
Kaipeng Deng 已提交
77 78 79 80 81
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input X "
          "must smaller than or equal to 5. But received: the shape of input X "
          "= [%s], the dimension of input X = [%d]",
          x_dims, x_dims.size()));
Q
qingqing01 已提交
82 83

  const int64_t C =
84 85 86
      ((this->IsMKLDNNType() == true) || (data_layout == DataLayout::kNCHW)
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);
Q
qingqing01 已提交
87

88 89
  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");
Q
qingqing01 已提交
90

91
  PADDLE_ENFORCE_EQ(
92 93 94 95 96 97 98 99 100 101 102 103
      scale_dim.size(), 1UL,
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of scale must equal to 1."
          "But received: the shape of scale is [%s], the dimension "
          "of scale is [%d]",
          scale_dim, scale_dim.size()));
  PADDLE_ENFORCE_EQ(bias_dim.size(), 1UL,
                    platform::errors::InvalidArgument(
                        "ShapeError: the dimension of bias must equal to 1."
                        "But received: the shape of bias is [%s],the dimension "
                        "of bias is [%d]",
                        bias_dim, bias_dim.size()));
C
ceci3 已提交
104

105 106 107 108 109 110 111
  bool check = true;
  if ((!ctx->IsRuntime()) && (framework::product(scale_dim) <= 0 ||
                              framework::product(bias_dim) <= 0)) {
    check = false;
  }

  if (check) {
112
    PADDLE_ENFORCE_EQ(scale_dim[0], C,
113 114 115 116
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of scale must equal to [%d]"
                          "But received: the shape of scale is [%d]",
                          C, scale_dim[0]));
117
    PADDLE_ENFORCE_EQ(bias_dim[0], C,
118 119 120 121
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of bias must equal to [%d]"
                          "But received: the shape of bias is [%d]",
                          C, bias_dim[0]));
122
  }
Q
qingqing01 已提交
123 124 125 126 127 128 129 130 131 132
  ctx->SetOutputDim("Y", x_dims);
  ctx->SetOutputDim("MeanOut", {C});
  ctx->SetOutputDim("VarianceOut", {C});
  ctx->SetOutputDim("SavedMean", {C});
  ctx->SetOutputDim("SavedVariance", {C});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType BatchNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
133
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
Q
qingqing01 已提交
134 135 136 137 138 139 140
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto bn_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    bn_param_type = framework::proto::VarType::FP64;
  }
K
Kaipeng Deng 已提交
141 142 143 144 145 146 147 148 149
  PADDLE_ENFORCE_EQ(
      bn_param_type, ctx.Input<Tensor>("Scale")->type(),
      platform::errors::InvalidArgument("Scale input should be of float type"));
  PADDLE_ENFORCE_EQ(
      bn_param_type, ctx.Input<Tensor>("Bias")->type(),
      platform::errors::InvalidArgument("Bias input should be of float type"));
  PADDLE_ENFORCE_EQ(
      bn_param_type, ctx.Input<Tensor>("Mean")->type(),
      platform::errors::InvalidArgument("Mean input should be of float type"));
Q
qingqing01 已提交
150
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Variance")->type(),
K
Kaipeng Deng 已提交
151 152
                    platform::errors::InvalidArgument(
                        "Variance input should be of float type"));
Q
qingqing01 已提交
153 154 155 156

  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
157
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
158 159 160 161
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
K
Kexin Zhao 已提交
162
  }
Q
qingqing01 已提交
163
#endif
Q
Qiao Longfei 已提交
164

Q
qingqing01 已提交
165 166 167 168
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
framework::OpKernelType BatchNormOp::GetKernelTypeForVar(
    const std::string &var_name, const Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "X") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
185 186
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
187 188 189 190 191 192 193
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Q
qingqing01 已提交
194 195 196 197 198 199 200 201 202
void BatchNormOpMaker::Make() {
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
  AddAttr<float>("momentum", "").SetDefault(0.9);
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
K
Kaipeng Deng 已提交
203 204 205 206 207 208 209
        PADDLE_ENFORCE_GE(
            epsilon, 0.0f,
            platform::errors::InvalidArgument(
                "'epsilon' should be greater or equal than 0.0."));
        PADDLE_ENFORCE_LE(epsilon, 0.001f,
                          platform::errors::InvalidArgument(
                              "'epsilon' should be less or equal than 0.001."));
Q
qingqing01 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
      });
  AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Mean",
           "The global mean (for training) or "
           "estimated mean (for testing)");
  AddInput("Variance",
           "The global variance (for training) "
           "or estimated Variance (for testing)");
225 226 227 228 229
  AddInput("MomentumTensor",
           "(Tensor<float32>, optional) If provided, batch_norm will "
           "use this as momentum, this has a higher priority than "
           "attr(momentum), the shape of this tensor MUST BE [1].")
      .AsDispensable();
Q
qingqing01 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  AddOutput("Y", "result after normalization");
  AddOutput("MeanOut",
            "Share memory with Mean. "
            "Store the global mean when training");
  AddOutput("VarianceOut",
            "Share memory with Variance. "
            "Store the global Variance when training");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
245 246 247 248
  AddOutput("ReserveSpace",
            "Reserve GPU space for triggering the new semi-persistent "
            "NHWC kernel")
      .AsDispensable();
Q
qingqing01 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_with_relu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("use_global_stats",
                "(bool, default false) Whether to use global mean and "
                "variance. In inference or test mode, set use_global_stats "
                "to true or is_test true. the behavior is equivalent. "
                "In train mode, when setting use_global_stats True, the "
                "global mean and variance are also used during train time, "
                "the BN acts as scaling and shiffting.")
      .SetDefault(false);
263 264 265 266 267
  AddAttr<bool>("trainable_statistics",
                "(bool, default false) Whether to calculate mean and variance "
                "in test mode. If setting true in test mode, mean and variace "
                "will be calculated by current batch statistics.")
      .SetDefault(false);
Q
qingqing01 已提交
268
  AddComment(R"DOC(
269
Batch Normalization.
Q
Qiao Longfei 已提交
270

271 272 273 274 275 276
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
277 278

)DOC");
Q
qingqing01 已提交
279
}
C
chengduo 已提交
280

Q
Qiao Longfei 已提交
281
template <typename T>
Q
QI JUN 已提交
282 283
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
284 285 286
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
287
    float momentum = ctx.Attr<float>("momentum");
Q
Qiao Longfei 已提交
288
    const bool is_test = ctx.Attr<bool>("is_test");
289
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
290 291
    const bool trainable_stats = ctx.Attr<bool>("trainable_statistics");
    bool test_mode = is_test && (!trainable_stats);
292

293
    bool global_stats = test_mode || use_global_stats;
294

Q
QI JUN 已提交
295 296 297
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
298 299 300

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
K
Kaipeng Deng 已提交
301 302 303 304 305 306
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "The Input X dim size should be larger than 1."));
    PADDLE_ENFORCE_LE(x_dims.size(), 5,
                      platform::errors::InvalidArgument(
                          "The Input X dim size should be less than 6."));
Q
Qiao Longfei 已提交
307 308
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
309 310
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
311 312 313
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
K
Kaipeng Deng 已提交
314

Q
Qiao Longfei 已提交
315 316 317 318 319 320 321 322 323 324 325 326
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

327
    if (!global_stats) {
Q
Qiao Longfei 已提交
328 329 330 331 332 333 334 335
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

336 337 338 339 340 341
      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);

      if ((N * sample_size) == 1) {
342 343
        // Only 1 element in normalization dimension,
        // we skip the batch norm calculation, let y = x.
344
        framework::TensorCopy(*x, ctx.GetPlace(), y);
345 346 347
        return;
      }

Q
QI JUN 已提交
348 349
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
350 351 352 353 354 355 356 357 358 359 360 361
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
362
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
Q
QI JUN 已提交
376
          PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
377 378
      }

379 380 381 382 383 384 385
      // if MomentumTensor is set, use MomentumTensor value, momentum
      // is only used in this training branch
      if (ctx.HasInput("MomentumTensor")) {
        const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
        momentum = mom_tensor->data<float>()[0];
      }

Q
Qiao Longfei 已提交
386 387 388 389 390 391 392 393
      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
394
    if (global_stats) {
Q
Qiao Longfei 已提交
395 396 397 398 399 400 401 402 403 404 405
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
406 407
        global_stats ? ctx.Input<Tensor>("Mean")->data<T>()
                     : ctx.Output<Tensor>("SavedMean")->data<T>(),
Q
Qiao Longfei 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
421 422
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
423 424 425 426 427 428 429 430
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
431
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
432 433 434 435 436 437 438 439 440
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
Q
QI JUN 已提交
441
        PADDLE_THROW("Unknown storage order: %d", data_layout);
Q
Qiao Longfei 已提交
442 443 444 445
    }
  }
};

Q
qingqing01 已提交
446 447
void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  // check input
448 449 450 451 452 453 454
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                 framework::GradVarName("Y"), "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean",
                 "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance",
                 "BatchNormGrad");
Q
qingqing01 已提交
455 456

  // check output
457 458
  OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                 framework::GradVarName("X"), "BatchNormGrad");
459 460 461 462 463

  const bool has_scale_grad = ctx->HasOutput(framework::GradVarName("Scale"));
  const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("Bias"));

  PADDLE_ENFORCE_EQ((has_scale_grad == has_bias_grad), true,
464
                    platform::errors::NotFound(
465 466 467 468 469
                        "Output(Scale@GRAD) and Output(Bias@GRAD) must be null "
                        "or not be null at same time. But now, "
                        "has Scale@Grad=[%d], has Bias@GRAD=[%d]",
                        has_scale_grad, has_bias_grad));

Q
qingqing01 已提交
470 471
  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
K
Kaipeng Deng 已提交
472 473 474 475 476
    PADDLE_ENFORCE_EQ(
        !ctx->Attrs().Get<bool>("use_mkldnn"), true,
        platform::errors::InvalidArgument(
            "Using global stats during training is not supported "
            "in gradient op kernel of batch_norm_mkldnn_op now."));
Q
qingqing01 已提交
477
  }
Q
Qiao Longfei 已提交
478

479 480 481 482
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNormGrad");
  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
483

484 485 486 487 488 489 490 491 492 493
  const int C =
      ((this->IsMKLDNNType() == true) || (data_layout == DataLayout::kNCHW)
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);

  ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  // has_scale_grad == has_bias_grad, judge has_scale_grad is enough
  if (has_scale_grad) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
Q
Qiao Longfei 已提交
494
  }
Q
qingqing01 已提交
495
}
Q
Qiao Longfei 已提交
496

Q
qingqing01 已提交
497 498 499 500
framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
K
Kaipeng Deng 已提交
501 502
    PADDLE_THROW(
        platform::errors::InvalidArgument("can't find gradient variable of Y"));
Q
qingqing01 已提交
503 504 505 506 507 508 509 510
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
K
Kaipeng Deng 已提交
511 512
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
Q
qingqing01 已提交
513
  }
514

Q
qingqing01 已提交
515 516 517
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
518

519
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
520 521 522 523 524
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
525
#endif
526

527 528 529
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(), layout,
      library);
Q
qingqing01 已提交
530
}
Q
Qiao Longfei 已提交
531

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
framework::OpKernelType BatchNormGradOp::GetKernelTypeForVar(
    const std::string &var_name, const Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "X") || (var_name == framework::GradVarName("Y"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Q
Qiao Longfei 已提交
557
template <typename T>
Q
QI JUN 已提交
558
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
559 560 561 562 563
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
K
Kaipeng Deng 已提交
564
    const auto *bias = ctx.Input<Tensor>("Bias");
Q
Qiao Longfei 已提交
565 566 567
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
568
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
569
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
570
    const bool is_test = ctx.Attr<bool>("is_test");
571
    const float epsilon = ctx.Attr<float>("epsilon");
Q
QI JUN 已提交
572 573
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
574

K
Kaipeng Deng 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    // batch_norm with inplace as false will take X as grad input, which
    // is same as cuDNN batch_norm backward calculation, batch_norm
    // with inplace as true only take Y as input and X should be calculate
    // by inverse operation of batch_norm on Y
    const Tensor *x;
    bool is_inplace;
    if (ctx.HasInput("Y")) {
      x = ctx.Input<Tensor>("Y");
      is_inplace = true;
      PADDLE_ENFORCE_EQ(d_x, d_y,
                        platform::errors::InvalidArgument(
                            "X@GRAD and Y@GRAD not inplace in inplace mode"));
    } else {
      x = ctx.Input<Tensor>("X");
      is_inplace = false;
      PADDLE_ENFORCE_NE(d_x, d_y,
                        platform::errors::InvalidArgument(
                            "X@GRAD and Y@GRAD inplaced in non-inplace mode"));
    }

599 600 601 602 603 604 605
    PADDLE_ENFORCE_EQ(
        is_test, false,
        platform::errors::InvalidArgument(
            "`is_test = True` CANNOT be used in train program. If "
            "you want to use global status in pre_train model, "
            "please set `use_global_stats = True`"));

Q
Qiao Longfei 已提交
606 607 608
    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
K
Kaipeng Deng 已提交
609 610 611 612 613 614
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "The Input X dim size should be larger than 1."));
    PADDLE_ENFORCE_LE(x_dims.size(), 5,
                      platform::errors::InvalidArgument(
                          "The Input X dim size should be less than 6."));
Q
Qiao Longfei 已提交
615 616
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
617 618
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
619 620 621 622
    const int sample_size = x->numel() / N / C;

    // init output
    d_x->mutable_data<T>(ctx.GetPlace());
623 624 625 626 627 628 629 630

    const T *mean_data = saved_mean->data<T>();
    const T *inv_var_data = saved_inv_variance->data<T>();
    Tensor inv_var_tensor;
    if (use_global_stats) {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_variance = ctx.Input<Tensor>("Variance");
      mean_data = running_mean->data<T>();
Z
Zeng Jinle 已提交
631
      inv_var_tensor.Resize({C});
632 633 634 635
      T *running_inv_var_data = inv_var_tensor.mutable_data<T>(ctx.GetPlace());
      EigenVectorArrayMap<T> inv_var_tmp(running_inv_var_data, C);
      ConstEigenVectorArrayMap<T> var_arr(running_variance->data<T>(), C);

636
      inv_var_tmp = (var_arr + epsilon).sqrt().inverse();
637 638 639 640
      inv_var_data = running_inv_var_data;
    }

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
K
Kaipeng Deng 已提交
641
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
642 643 644 645 646 647 648 649 650 651 652
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

    T *d_bias_data = nullptr;
    T *d_scale_data = nullptr;
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
      d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());
    }
Q
Qiao Longfei 已提交
653 654 655 656 657

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))
658 659
    EigenVectorArrayMap<T> d_bias_arr(d_bias_data, C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale_data, C);
Q
Qiao Longfei 已提交
660

661 662 663 664
    if (d_scale && d_bias) {
      d_bias_arr.setZero();
      d_scale_arr.setZero();
    }
Q
Qiao Longfei 已提交
665

666 667
    if ((N * sample_size) == 1 && !use_global_stats) {
      framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
668 669 670
      return;
    }

671 672
    int scale_coefff = use_global_stats ? 1 : N * sample_size;
    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / scale_coefff;
Q
Qiao Longfei 已提交
673

L
lvmengsi 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    Tensor dy_sum;
    dy_sum.Resize({C});
    dy_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_sum_arr(dy_sum.mutable_data<T>(ctx.GetPlace()),
                                      C);

    Tensor dy_mul_x_sub_mean_mul_invstd_sum;
    dy_mul_x_sub_mean_mul_invstd_sum.Resize({C});
    dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_mul_x_sub_mean_mul_invstd_sum_arr(
        dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace()), C);

    dy_sum_arr.setZero();
    dy_mul_x_sub_mean_mul_invstd_sum_arr.setZero();

K
Kaipeng Deng 已提交
689 690 691 692 693 694 695
    // inplace calculation
    // Y:  ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    // X: (y - bias) / scale / (inv_var) + est_mean
    //   formula transform ====>
    //    (y - bias) / (scale * inv_var) + est_mean
Q
QI JUN 已提交
696 697
    switch (data_layout) {
      case DataLayout::kNCHW: {
K
Kaipeng Deng 已提交
698 699 700 701 702 703 704 705 706 707 708
        if (is_inplace) {
          auto px = *x;
          EigenArrayMap<T> x_data(px.mutable_data<T>(ctx.GetPlace()),
                                  sample_size, N * C);
          ConstEigenArrayMap<T> y_data(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            x_data.col(nc) = (y_data.col(nc) - bias_arr(nc % C)) /
                                 scale_inv_var_nhw(nc % C) / scale_coefff +
                             mean_arr(nc % C);
          }
        }
Q
Qiao Longfei 已提交
709 710 711 712 713
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                 sample_size, N * C);

L
lvmengsi 已提交
714 715 716 717 718 719 720 721
        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          dy_sum_arr(c) += d_y_arr.col(nc).sum();
          dy_mul_x_sub_mean_mul_invstd_sum_arr(c) +=
              ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc))
                  .sum();
        }

722
        if (d_scale && d_bias) {
L
lvmengsi 已提交
723 724
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
Q
Qiao Longfei 已提交
725
        }
L
lvmengsi 已提交
726

727 728 729
        if (!use_global_stats) {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
K
Kaipeng Deng 已提交
730
            d_x_arr.col(nc) =
731
                scale_inv_var_nhw(c) *
L
lvmengsi 已提交
732 733 734
                (d_y_arr.col(nc) * N * sample_size - dy_sum_arr(c) -
                 (x_arr.col(nc) - mean_arr[c]) *
                     dy_mul_x_sub_mean_mul_invstd_sum_arr(c) * inv_var_arr(c));
735 736 737 738
          }
        } else {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
K
Kaipeng Deng 已提交
739
            d_x_arr.col(nc) = scale_inv_var_nhw(c) * d_y_arr.col(nc);
740
          }
Q
Qiao Longfei 已提交
741 742 743
        }
        break;
      }
Q
QI JUN 已提交
744
      case DataLayout::kNHWC: {
K
Kaipeng Deng 已提交
745 746 747 748 749 750 751 752 753 754 755
        if (is_inplace) {
          auto px = *x;
          EigenArrayMap<T> x_data(px.mutable_data<T>(ctx.GetPlace()), C,
                                  N * sample_size);
          ConstEigenArrayMap<T> y_data(x->data<T>(), C, N * sample_size);
          for (int nhw = 0; nhw < N * sample_size; nhw++) {
            x_data.col(nhw) = (y_data.col(nhw) - bias_arr) / scale_inv_var_nhw /
                                  scale_coefff +
                              mean_arr;
          }
        }
Q
Qiao Longfei 已提交
756 757 758 759 760
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                 N * sample_size);

L
lvmengsi 已提交
761 762 763 764 765
        for (int nhw = 0; nhw < N * sample_size; ++nhw) {
          dy_sum_arr += d_y_arr.col(nhw);
          dy_mul_x_sub_mean_mul_invstd_sum_arr +=
              (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
        }
766 767

        if (d_scale && d_bias) {
L
lvmengsi 已提交
768 769
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
770 771 772 773
        }

        if (!use_global_stats) {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
K
Kaipeng Deng 已提交
774
            d_x_arr.col(nhw) =
775
                scale_inv_var_nhw *
L
lvmengsi 已提交
776 777 778
                (d_y_arr.col(nhw) * N * sample_size - dy_sum_arr -
                 (x_arr.col(nhw) - mean_arr) *
                     dy_mul_x_sub_mean_mul_invstd_sum_arr * inv_var_arr);
779 780 781
          }
        } else {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
K
Kaipeng Deng 已提交
782
            d_x_arr.col(nhw) = scale_inv_var_nhw * d_y_arr.col(nhw);
783
          }
Q
Qiao Longfei 已提交
784 785 786 787
        }
        break;
      }
      default:
Q
QI JUN 已提交
788
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
789 790 791 792
    }
  }
};

H
hong 已提交
793
template <typename T>
794
void BatchNormGradMaker<T>::Apply(GradOpPtr<T> op) const {
795 796 797 798 799 800 801 802
  op->SetType(this->ForwardOpType() + "_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("Bias", this->Input("Bias"));
  op->SetInput("SavedMean", this->Output("SavedMean"));
  op->SetInput("SavedVariance", this->Output("SavedVariance"));
803 804 805
  if (this->HasOutput("ReserveSpace")) {
    op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
  }
806 807 808 809 810 811

  // used when setting use_global_stats True during training
  if (boost::get<bool>(this->GetAttr("use_global_stats"))) {
    op->SetInput("Mean", this->Output("MeanOut"));
    op->SetInput("Variance", this->Output("VarianceOut"));
  }
812

813
  op->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
814

815 816 817 818
  op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
  op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
}
Y
Yu Yang 已提交
819

Q
Qiao Longfei 已提交
820 821 822 823
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yu Yang 已提交
824
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
H
hong 已提交
825 826 827
                  ops::BatchNormOpInferVarType,
                  ops::BatchNormGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormGradMaker<paddle::imperative::OpBase>);
828
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp);
Y
Yu Yang 已提交
829

Q
QI JUN 已提交
830
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
831 832
    batch_norm, ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, double>);
Q
Qiao Longfei 已提交
833 834
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
D
dzhwinter 已提交
835 836
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, double>);