distribute_transpiler.py 100.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
133 134 135 136
    A configuration class that provide support for distributed jobs.
    Some important parameters are explained as follows:


H
haowang101779990 已提交
137 138
    .. py:attribute:: slice_var_up (bool)

139
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
140 141 142

    .. py:attribute:: split_method (PSDispatcher)

143 144 145 146
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
147 148 149

    .. py:attribute:: min_block_size (int)

150
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
151 152

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
153
          We can use bandwidth effiently when data size is larger than 2MB.If you
154 155 156 157
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
158

159 160 161
    Examples:
        .. code-block:: python

162 163 164
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

165 166
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
167 168
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
169 170 171 172 173
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
174
    enable_dc_asgd = False
175
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
176
    mode = "pserver"
177
    print_log = False
W
Wu Yi 已提交
178
    wait_port = True
Q
Qiao Longfei 已提交
179
    # split the send recv var in runtime
180 181
    _runtime_split_send_recv = False
    _sync_mode = True
G
gongweibao 已提交
182

183 184 185 186 187 188 189
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

190
    # if mode is collective
191
    # supported modes: grad_allreduce, local_sgd
192 193
    collective_mode = None

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
        return self._runtime_split_send_recv

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
        if value and self._sync_mode:
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
        self._runtime_split_send_recv = value

    @property
    def sync_mode(self):
        return self._sync_mode

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
        if value and self._runtime_split_send_recv:
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
        self._sync_mode = value

G
gongweibao 已提交
225

Y
gen rst  
yi.wu 已提交
226
class DistributeTranspiler(object):
Y
yi.wu 已提交
227 228 229 230
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
231
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
232

W
Wu Yi 已提交
233 234 235 236 237 238 239 240 241
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
242 243 244 245

    Examples:
        .. code-block:: python

246 247 248 249 250 251 252 253 254 255
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
256 257 258 259 260 261
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
262
            role = "PSERVER"
T
Tink_Y 已提交
263 264 265 266 267 268
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
269
                                                                pserver_program)
T
Tink_Y 已提交
270 271 272 273
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
274 275
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
276 277
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
278
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
279
            t = fluid.DistributeTranspiler(config=config)
280
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
281
            exe = fluid.ParallelExecutor(
282 283 284
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
285 286
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
287
    """
Y
Yancey1989 已提交
288

G
gongweibao 已提交
289 290 291 292 293 294 295 296 297
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

298 299 300
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
301 302 303
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
304 305 306 307
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
308 309
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
310 311 312 313 314 315
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
316 317
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
318 319 320

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
321 322 323 324 325 326 327 328 329

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
330 331 332 333
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
334 335 336 337 338
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
339 340 341 342 343
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
344 345 346 347 348 349 350
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
351 352 353 354 355
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
        else:
            raise ValueError('invalid trainers config: ' + str(trainers))

        if len(endpoints) == 1:
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
382
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
383
        elif collective_mode == 'local_sgd':
384
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
385 386 387 388 389 390 391 392 393 394 395
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
396
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
397
        sparse_update_ops = []
398
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
399 400
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
401
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
402 403 404
                sparse_update_ops.append(op)
        return sparse_update_ops

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
480

481 482
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
483 484 485 486 487 488

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
489

490 491 492 493 494
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
495
                  sync_mode=True,
W
Wu Yi 已提交
496 497
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
498
        """
499
        Run the transpiler. Transpile the input program.
Y
yi.wu 已提交
500 501 502 503 504 505

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
506 507
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
508 509
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
510 511 512
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
513
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
514 515
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
516 517 518
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
519 520 521 522 523 524 525 526 527 528 529

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
530 531 532
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
533 534
        if startup_program is None:
            startup_program = default_startup_program()
535
        self.origin_program = program
W
Wu Yi 已提交
536 537
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
538

W
Wu Yi 已提交
539 540
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
541
            self.origin_program._trainers_endpoints = trainers.split(",")
542 543
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
544 545 546 547 548
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
549
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
550 551 552 553 554 555 556 557 558 559 560
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
561 562 563 564
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
565 566
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
567 568
            return

569 570 571 572 573 574 575 576 577 578 579
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

580
        self.trainer_num = trainers
581
        self.sync_mode = sync_mode
582 583 584
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
585
        self.vars_overview = VarsDistributed()
586 587
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
588
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
589 590
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
591
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
592
        self.grad_name_to_param_name = dict()
593 594
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
595
            self.grad_name_to_param_name[grad_var.name] = param_var.name
596

Q
Qiao Longfei 已提交
597
        # get all sparse update ops
Q
Qiao Longfei 已提交
598
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
599
            self.origin_program)
Q
Qiao Longfei 已提交
600
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
601 602
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
603 604 605
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
606
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
607 608 609
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

610
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
611
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
612
        self._init_splited_vars()
613

G
gongweibao 已提交
614
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
615
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
616
        send_vars = []
617 618 619 620 621 622

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
623
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
624

G
gongweibao 已提交
625
        if not self.config.slice_var_up:
626 627
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
628

629
        self.grad_name_to_send_dummy_out = dict()
630
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
631
            eplist = ps_dispatcher.dispatch(splited_vars)
632

G
gongweibao 已提交
633
            if not self.config.slice_var_up:
634 635
                assert (len(splited_vars) == 1)

636
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
637
            if len(splited_vars) == 1:
638
                splited_grad_varname = splited_vars[0].name
639 640
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
641

Y
Yancey1989 已提交
642
            elif len(splited_vars) > 1:
643
                orig_var = program.global_block().vars[splited_grad_varname]
644 645
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
646

Q
Qiao Longfei 已提交
647 648 649 650
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
651 652
            else:
                AssertionError("Can not insert the send op by original "
653
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
654

655 656 657 658 659 660 661
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
662 663
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
664
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
665

Q
Qiao Longfei 已提交
666 667 668 669 670 671 672 673 674 675 676
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
677 678 679 680
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
681
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
682
                index=index + 1,
683
                type="send",
Q
Qiao Longfei 已提交
684
                inputs={"X": send_input_vars},
685
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
686 687
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
688 689
                    "sections": sections,
                    "send_varnames": send_varnames,
690
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
691 692 693
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
694
                    ]
Y
Yancey1989 已提交
695
                })
Y
update  
Yancey1989 已提交
696 697
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
698 699

        if self.sync_mode:
W
Wu Yi 已提交
700 701
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
702 703 704 705
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
706
            input_deps = list(self.grad_name_to_send_dummy_out.values())
707

Y
Yancey1989 已提交
708 709
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
710
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
711
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
712 713
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
714
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
715
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
716
                })
Y
Yancey1989 已提交
717

G
gongweibao 已提交
718
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
719
        recv_vars = []
Y
update  
Yancey1989 已提交
720
        for _, var in enumerate(send_vars):
721
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
722
        ps_dispatcher.reset()
Y
Yancey1989 已提交
723 724
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
725
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
726 727
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
728

729 730 731 732
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

733 734
        need_sparse_update_params = {}

Y
Yancey1989 已提交
735
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
736
        all_recv_outputs = []
737
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
738
            eps = []
Q
Qiao Longfei 已提交
739
            table_names = []
Y
Yancey1989 已提交
740 741 742
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
743
                table_names.append(var.name)
W
Wu Yi 已提交
744 745 746 747
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
748
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
749
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
750

W
Wu Yi 已提交
751 752 753 754 755 756 757 758 759
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
760
            if param_varname in self.sparse_param_to_height_sections:
761 762 763 764 765
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

766
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
767
            else:
Q
Qiao Longfei 已提交
768 769 770
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
771
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
772
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
773
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
774

Q
Qiao Longfei 已提交
775 776 777 778 779 780
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
781
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
782 783 784
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
785
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
786
                    })
T
typhoonzero 已提交
787

Q
qiaolongfei 已提交
788
        if self.sync_mode:
W
Wu Yi 已提交
789
            # form a WAW dependency
Q
qiaolongfei 已提交
790 791 792
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
793
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
794 795
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
796
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
797 798
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
799

800
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
801 802
            if len(splited_var) <= 1:
                continue
803
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
804
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
805 806 807 808 809 810 811 812 813
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
814

815 816 817
            self._update_remote_sparse_update_op(program,
                                                 need_sparse_update_params)

G
gongweibao 已提交
818 819
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

820
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
821 822
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
823
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
824

825 826 827
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
828
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
829 830 831 832 833
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
834 835 836 837 838 839 840 841 842 843 844 845

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
846
        """
T
typhoonzero 已提交
847
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
848
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
849

T
typhoonzero 已提交
850
        lr_ops = self._get_lr_ops()
851
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
852 853
        delete_ops(self.origin_program.global_block(), lr_ops)

854 855
        # delete table init op
        if self.has_distributed_lookup_table:
856 857 858
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
859 860
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
861 862 863 864 865
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
866
            table_init_op = table_param_init_op[0]
867 868 869 870 871 872
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
873

874
        self.origin_program.__str__()
G
gongweibao 已提交
875

W
Wu Yi 已提交
876 877 878
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

879
        return self.origin_program
T
typhoonzero 已提交
880

W
Wu Yi 已提交
881
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
882 883 884 885
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
886
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
887
            eplist (list): A list of strings indicating
G
gongweibao 已提交
888 889 890 891

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
892
        startup_program = self.startup_program
G
gongweibao 已提交
893 894 895 896

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
897
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
918
                inputs={"X": []},
G
gongweibao 已提交
919 920 921
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
922
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
923 924 925
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
926 927
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
928 929 930
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
931
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
932 933
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
934
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
935 936 937
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
938
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
939
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
940 941
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
942
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
943
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
944 945 946 947 948 949 950 951 952 953
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
954 955 956 957 958 959 960 961
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
962 963
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
964
        Get parameter server side program.
965

Y
yi.wu 已提交
966 967
        Args:
            endpoint (str): current parameter server endpoint.
968

Y
yi.wu 已提交
969 970
        Returns:
            Program: the program for current parameter server to run.
971 972 973 974 975 976 977 978 979 980 981 982 983 984

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
985
        """
Y
yi.wu 已提交
986 987 988 989
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
990 991 992
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
993 994
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
995
        pserver_program.random_seed = self.origin_program.random_seed
996 997
        pserver_program._copy_dist_param_info_from(self.origin_program)

998
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
999 1000 1001 1002 1003 1004 1005 1006
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1007 1008 1009 1010 1011
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1021
            if self.sync_mode and self.trainer_num > 1:
1022
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1032

Q
qiaolongfei 已提交
1033
        # step 3
1034
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1035 1036 1037
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1038
        # step 3.2
T
typhoonzero 已提交
1039 1040 1041 1042
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1043 1044
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1045
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1046
        # step 3.3
W
Wu Yi 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1065
        # Iterate through the ops, and if an op and the optimize ops
1066
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1067
        # append it into the sub program.
T
typhoonzero 已提交
1068 1069 1070

        global_ops = []

1071 1072 1073
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1074 1075
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1076
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1077
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1078 1079
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1080
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1081
                self._append_pserver_non_opt_ops(block, op)
1082

Y
Yancey1989 已提交
1083
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1084 1085 1086 1087 1088 1089 1090 1091
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1092
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1093 1094 1095

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1096
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1097 1098

            # clone ops
Y
Yancey1989 已提交
1099 1100
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1101
                # clone sub_block of op
Y
Yancey1989 已提交
1102
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1103 1104

            # reset the block of op
W
Wu Yi 已提交
1105
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1106

1107
        # append lr decay ops to the child block if exists
1108
        lr_ops = self._get_lr_ops()
1109 1110
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1111
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1112
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1113
                pserver_program.num_blocks - 1)
1114
            optimize_blocks.append(lr_decay_block)
1115
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1116
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1117
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1118 1119
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1120

T
typhoonzero 已提交
1121
        # append op to the current block
Q
qiaolongfei 已提交
1122
        grad_to_block_id = []
Q
qiaolongfei 已提交
1123
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1124
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1125
            per_opt_block = pserver_program._create_block(pre_block_idx)
1126
            optimize_blocks.append(per_opt_block)
1127
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1128
            # append grad merging ops before clip and weight decay
1129 1130
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1131
            for _, op in enumerate(self.optimize_ops):
1132
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1133
                # merged_var should be the input var name of L2Decay
1134 1135 1136
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1137 1138 1139
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1140 1141 1142 1143 1144 1145
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1146
                            op not in global_ops:
1147 1148 1149 1150 1151
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1152

1153
        # dedup grad to ids list
W
Wu Yi 已提交
1154
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1155
        # append global ops
1156
        if global_ops:
W
Wu Yi 已提交
1157
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1158
                pserver_program.num_blocks - 1)
1159
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1160
            for glb_op in global_ops:
X
Xi Chen 已提交
1161
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1162
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1163

1164
        # process distributed lookup_table
Q
qiaolongfei 已提交
1165
        prefetch_var_name_to_block_id = []
1166 1167
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1168
            table_opt_block = self._create_table_optimize_block(
1169
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1170
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1171
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1172
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1173 1174
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1175

T
tangwei12 已提交
1176
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1177 1178
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1179

1180
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1181 1182
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1183 1184 1185 1186 1187 1188
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1189
        attrs = {
1190
            "optimize_blocks": optimize_blocks,
1191 1192 1193
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1194
            "grad_to_block_id": grad_to_block_id,
1195
            "sparse_grad_to_param": sparse_grad_to_param,
1196
        }
T
tangwei12 已提交
1197 1198

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1199
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1200 1201
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1202

T
tangwei12 已提交
1203 1204 1205 1206
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1207 1208 1209 1210 1211
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1212
            attrs=attrs)
1213

W
Wu Yi 已提交
1214
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1215 1216
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1217 1218
        return pserver_program

W
Wu Yi 已提交
1219 1220 1221 1222 1223 1224
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1225

W
Wu Yi 已提交
1226 1227
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1242 1243
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1244 1245
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1246 1247
        return pserver_prog, pserver_startup

1248 1249
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1250
                            pserver_program=None,
1251
                            startup_program=None):
T
typhoonzero 已提交
1252
        """
W
Wu Yi 已提交
1253 1254
        **Deprecated**

T
typhoonzero 已提交
1255 1256 1257
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1258 1259 1260

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1261 1262
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1263
                when initalizing
1264

Y
yi.wu 已提交
1265 1266
        Returns:
            Program: parameter server side startup program.
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1282 1283
        """
        s_prog = Program()
W
Wu Yi 已提交
1284
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1285
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1297
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1298
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1299
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1300 1301 1302 1303
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1304
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1305 1306
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1317 1318

            if op_on_pserver:
1319 1320 1321
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1322
                if op.type in [
1323 1324
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1325
                ]:
W
Wu Yi 已提交
1326
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1327 1328 1329 1330
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1331
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1341

T
typhoonzero 已提交
1342 1343
        return s_prog

1344 1345
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1346
        block_suffix = "block"
1347 1348 1349
        block_idx = 0
        offset = 0
        is_slice = False
1350

1351
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1352

1353 1354
        if not block_name:
            return is_slice, block_idx, offset
1355

1356 1357 1358 1359
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1360 1361 1362 1363 1364
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1428

Y
yi.wu 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1468
    def _init_splited_vars(self):
Y
yi.wu 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1492
        if self.config.slice_var_up:
Y
yi.wu 已提交
1493 1494
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1495 1496 1497
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1498
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1499 1500
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1501 1502 1503
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1504 1505 1506 1507
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1508 1509
        assert (len(grad_blocks) == len(param_blocks))

1510
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1511 1512
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1529
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1530 1531 1532 1533
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1534
        # dict(grad_splited_var -> param_splited_var)
1535
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1536 1537 1538
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1539
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1540
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1541 1542

        # create mapping of endpoint -> split var to create pserver side program
1543
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1553
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1554 1555
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1556
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1557
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1558 1559
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1560 1561
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1562 1563 1564 1565 1566 1567

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1568 1569
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1570
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1571 1572 1573
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1574 1575
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1576 1577
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1578 1579 1580
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1581
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1582
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1583 1584

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1585
                    self.all_out_emb_vars.append(out_var)
1586 1587

                    # delete lookup_table_op
1588
                    delete_ops(program.global_block(), [op])
1589 1590 1591
                    # break for loop
                    break

S
seiriosPlus 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1638
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1639
        # 2. add split_ids_op and send_op to send gradient to pservers
1640

1641 1642
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1643
        table_grad_name = grad_var_name(self.table_name)
1644 1645 1646 1647
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1648
                program.global_block()._insert_op(
1649 1650 1651 1652 1653
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1654 1655
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1656
                program.global_block()._insert_op(
1657
                    index=op_index + 2,
1658
                    type="send",
1659
                    inputs={'X': self.trainer_side_table_grad_list},
1660 1661 1662 1663 1664
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1665 1666
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1667
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1668 1669 1670 1671 1672
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1673
                    })
1674 1675 1676 1677 1678 1679
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1680
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1706
        return prefetch_var_name_to_block_id
1707 1708

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1709
                                     pre_block_idx, grad_to_block_id):
1710
        # STEP: create table optimize block
1711
        table_opt_block = pserver_program._create_block(pre_block_idx)
1712
        # create table param and grad var in pserver program
1713 1714
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1715 1716 1717
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1718 1719
        ][0]

Y
Yancey1989 已提交
1720 1721
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1722

T
tangwei12 已提交
1723
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1724 1725
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1726 1727 1728
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1729 1730
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1731
            shape=table_shape,
Y
Yancey1989 已提交
1732 1733 1734
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1735

1736 1737
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1738
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1739
            self.origin_program.global_block().vars[grad_var_name(
1740
                self.table_name)])
1741

1742 1743 1744
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1745

1746 1747 1748
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1749
            pserver_side_table_grad_list = [
1750 1751 1752 1753 1754 1755 1756 1757 1758
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1759
            # append sum op for pserver_side_table_grad_list
1760 1761
            table_opt_block.append_op(
                type="sum",
1762
                inputs={"X": pserver_side_table_grad_list},
1763 1764
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1765 1766
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1767
            origin_grad_name = grad_var.name
1768 1769
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1770 1771
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1772
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1773
            grad_var = pserver_program.global_block()._rename_var(
1774
                origin_grad_name, splited_grad_name)
1775 1776 1777 1778 1779 1780 1781

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1782
        # only support sgd now
1783 1784 1785
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1786
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1787

1788 1789 1790
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1791 1792
        return table_opt_block

T
tangwei12 已提交
1793 1794 1795 1796 1797
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1798
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1799
            name="kLookupTablePath",
T
tangwei12 已提交
1800 1801
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1802

W
Wu Yi 已提交
1803
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1804
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1805 1806 1807 1808
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1809
            attrs={'file_path': "none"})
T
tangwei12 已提交
1810 1811 1812

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1813 1814 1815 1816 1817
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1818
        Create vars for each split.
T
typhoonzero 已提交
1819 1820
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1821 1822 1823 1824
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1825
        Returns:
1826
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1827
                from original var name to each var split.
T
typhoonzero 已提交
1828
        """
1829 1830

        # varname->[(block_id, current_block_size)]
1831
        block_map = collections.OrderedDict()
1832

1833
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1834 1835
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1836
            if varname not in block_map:
T
typhoonzero 已提交
1837
                block_map[varname] = []
1838
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1839

M
minqiyang 已提交
1840
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1841
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1842
            if len(splited) == 1:
1843
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1844
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1845
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1846
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1847 1848 1849 1850 1851
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1852
                continue
T
typhoonzero 已提交
1853
            var_mapping[varname] = []
T
typhoonzero 已提交
1854 1855 1856 1857
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1858

T
typhoonzero 已提交
1859
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1860
                size = block[1]
M
minqiyang 已提交
1861
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1862 1863 1864
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1865
                new_var_name = ""
1866
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1867
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1868
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1869 1870
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1871
                                   (varname, i)
T
typhoonzero 已提交
1872
                var = program.global_block().create_var(
T
typhoonzero 已提交
1873 1874
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1875
                    dtype=orig_var.dtype,
1876
                    type=orig_var.type,
T
typhoonzero 已提交
1877
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1878
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1879
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1880
        return var_mapping
T
done  
typhoonzero 已提交
1881

1882
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1883 1884 1885 1886 1887 1888
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1889
            persistable=persistable)
T
done  
typhoonzero 已提交
1890

Q
Qiao Longfei 已提交
1891 1892 1893 1894 1895 1896 1897
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1898
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1899 1900
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1901
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1902
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1903
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1904 1905
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1906
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1907 1908 1909 1910
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1911 1912 1913 1914
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1915
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1916
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1917 1918 1919 1920
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1921
                attrs={
Q
Qiao Longfei 已提交
1922
                    "sections": height_sections,
1923 1924
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1925 1926 1927
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1928

T
typhoonzero 已提交
1929 1930 1931 1932
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1933
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1946
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1947 1948
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1949 1950
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1951
                return param_shape
1952 1953 1954
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1955 1956 1957
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1958 1959
        elif op_type == "sgd":
            pass
1960 1961 1962 1963
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1964 1965
        return orig_shape

1966 1967
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1968
        orig_var_name = ""
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1979
        else:
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2002
            return None
2003 2004 2005 2006
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2007
        else:
2008
            merged_var_name = orig_varname
2009 2010

        merged_var = pserver_block.vars[merged_var_name]
2011 2012 2013
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2014
            for i in range(self.trainer_num):
2015
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2016
                                   (merged_var_name, i)
2017 2018 2019 2020
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2021 2022
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2023 2024 2025 2026 2027
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2028
        return merged_var
T
typhoonzero 已提交
2029

W
Wu Yi 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2092
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2093 2094
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2095
        program = optimize_block.program
T
typhoonzero 已提交
2096
        pserver_block = program.global_block()
2097
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2108 2109 2110 2111
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2112
        for key in opt_op.input_names:
T
typhoonzero 已提交
2113
            if key == "Grad":
W
Wu Yi 已提交
2114 2115 2116
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2127
            elif key == "Param":
W
Wu Yi 已提交
2128
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2129 2130
                if not param_block:
                    return
T
typhoonzero 已提交
2131
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2132
                    name=param_block.name,
T
typhoonzero 已提交
2133
                    persistable=True,
T
typhoonzero 已提交
2134 2135 2136
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2137
            elif key == "LearningRate":
2138
                # learning rate variable has already be created by non-optimize op,
2139
                # don't create it once again.
2140
                lr_varname = opt_op.input(key)[0]
2141
                if lr_varname in pserver_block.vars:
2142 2143 2144 2145 2146 2147 2148 2149 2150
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2151

T
typhoonzero 已提交
2152
        for key in opt_op.input_names:
2153
            new_shape = None
W
Wu Yi 已提交
2154
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
2155
                continue
2156
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2157
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2158
            # update accumulator variable shape
2159 2160
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2161
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2162 2163 2164 2165 2166
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2167

2168
        # change output's ParamOut variable
2169 2170
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2171
        outputs["ParamOut"] = new_inputs["Param"]
2172
        optimize_block.append_op(
T
typhoonzero 已提交
2173 2174
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2175
            outputs=outputs,
G
gongweibao 已提交
2176
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2177

2178 2179 2180 2181 2182 2183
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2195
        grad_block = None
M
minqiyang 已提交
2196
        for _, g in six.iteritems(var_dict):
2197
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2198
                # skip per trainer vars
2199
                if g.name.find(".trainer_") == -1:
2200
                    # only param or grads have splited blocks
2201 2202
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2203 2204
                        grad_block = g
                        break
2205 2206
        return grad_block

Q
Qiyang Min 已提交
2207 2208 2209
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2210
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2211 2212 2213 2214
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2215
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2216 2217 2218

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2219
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2220 2221 2222 2223
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2224
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2225

Y
Yancey1989 已提交
2226
        return block.append_op(
G
gongweibao 已提交
2227
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2228 2229

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2230
        program = optimize_block.program
2231
        # Append the ops for parameters that do not need to be optimized/updated
2232 2233
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2234
        for key, varlist in six.iteritems(inputs):
2235 2236
            if not isinstance(varlist, list):
                varlist = [varlist]
2237 2238 2239
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2240
                # for inputs/outputs
2241
                grad_block = self._get_pserver_grad_param_var(
2242 2243
                    var, program.global_block().vars)
                if grad_block:
2244
                    varlist[i] = grad_block
2245
                elif var.name not in program.global_block().vars:
2246 2247 2248 2249 2250
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2251

2252 2253
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2254
        for key, varlist in six.iteritems(outputs):
2255 2256
            if not isinstance(varlist, list):
                varlist = [varlist]
2257 2258 2259
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2260 2261
                    var, program.global_block().vars)
                if grad_block:
2262
                    varlist[i] = grad_block
2263
                elif var.name not in program.global_block().vars:
2264 2265 2266 2267 2268
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2269

Y
Yancey1989 已提交
2270
        return optimize_block.append_op(
T
typhoonzero 已提交
2271
            type=opt_op.type,
T
typhoonzero 已提交
2272 2273
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2274
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2275

2276 2277 2278 2279
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2280
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2281
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2282 2283 2284 2285 2286 2287
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2288 2289
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2290 2291 2292 2293 2294 2295
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2296
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2297
        if "Param" in op.input_names and \
T
tangwei12 已提交
2298
                "LearningRate" in op.input_names:
2299 2300 2301 2302 2303 2304 2305
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2306
        if op.input("Param")[0] in param_names:
2307 2308 2309
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2310
                param = op.input("Param")[0]
T
typhoonzero 已提交
2311
                if same_or_split_var(n, param) and n != param:
2312 2313 2314
                    return True
            return False

T
typhoonzero 已提交
2315
    def _get_input_map_from_op(self, varmap, op):
2316
        """Returns a dict from op input name to the vars in varmap."""
2317
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2329
        """Returns a dict from op output name to the vars in varmap."""
2330
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2331 2332 2333 2334 2335 2336 2337 2338 2339
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2340 2341

    def _get_lr_ops(self):
2342 2343 2344
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2345 2346 2347 2348
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2349 2350 2351 2352 2353
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2354 2355 2356 2357
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2358
            if self._is_optimizer_op(op):
2359 2360 2361 2362
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2363
        block = self.origin_program.global_block()
2364 2365 2366 2367 2368
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2369

2370 2371 2372 2373 2374
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2375
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2376 2377 2378 2379 2380 2381
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2382 2383
                    # we only need to append op for once
                    break
2384
        return lr_ops
Y
Yancey1989 已提交
2385

W
Wu Yi 已提交
2386 2387 2388 2389 2390
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2391 2392
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2393 2394 2395
            return True
        return False

Y
Yancey1989 已提交
2396
    def _get_optimize_pass(self):
2397
        """
2398
        Get optimizer operators, parameters and gradients from origin_program
2399 2400
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2401
            params_grads (dict): parameter->gradient.
2402
        """
Y
Yancey1989 已提交
2403 2404 2405
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2406 2407
        # tmp set to dedup
        optimize_params = set()
2408
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2409
        for op in block.ops:
W
Wu Yi 已提交
2410
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2411
                opt_ops.append(op)
2412 2413 2414 2415 2416 2417
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2418 2419
                        params_grads.append([
                            origin_var_dict[param_name],
2420
                            origin_var_dict[grad_name]
2421
                        ])
Y
Yancey1989 已提交
2422 2423 2424
            else:
                pass
        return opt_ops, params_grads