pipeline_optimizer.py 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14
from __future__ import print_function
S
sandyhouse 已提交
15
from __future__ import division
16 17 18 19

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
20 21
from paddle.fluid.optimizer import PipelineOptimizer as PO
from .meta_optimizer_base import MetaOptimizerBase
22
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_update_op, is_loss_grad_op, is_backward_op, is_optimizer_op
23 24


S
sandyhouse 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def _get_node_num(endpoints):
    ss = set()
    for ep in endpoints:
        ip = ep.split(":")[0].strip()
        if ip not in ss:
            ss.add(ip)
    return len(ss)


class PipelineHelper(object):
    def __init__(self, role_maker, wait_port='6174'):
        self.wait_port = wait_port
        self.role_maker = role_maker

    def update_startup_program(self, startup_program=None):
        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = fluid.default_startup_program()

        endpoints = self.role_maker.get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker.worker_index()]
        node_num = _get_node_num(endpoints)
        assert len(endpoints) % node_num == 0
        gpus_per_node = len(endpoints) // node_num

        # Create a global ring for all gpus
        print("current_endpoint:", current_endpoint)
        print("endpoints:", endpoints)
        print("rank:", self.role_maker.worker_index())
        self._init_communicator(
            self.startup_program, current_endpoint, endpoints,
            self.role_maker.worker_index(), 0, self.wait_port)

        if node_num == 1: return
        # Create rings for gpus with the same gpu id
        eps = []
        local_rank = self.role_maker.worker_index() % gpus_per_node
        ring_id = local_rank + 1
        for i in range(node_num):
            eps.append(endpoints[i * gpus_per_node + local_rank])
        temp_rank = self.role_maker.worker_index() // node_num
        self._init_communicator(self.startup_program, current_endpoint, eps,
                                temp_rank, ring_id, self.wait_port)
        self._broadcast_params(ring_id)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    def _init_communicator(self, program, current_endpoint, endpoints, rank,
                           ring_id, wait_port):
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

        block = program.global_block()
        nccl_id_var = block.create_var(
            name=unique_name.generate('nccl_id'),
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
S
sandyhouse 已提交
91
                OP_ROLE_KEY: OpRole.Forward,
92 93 94 95 96 97 98 99 100 101 102 103
            })
        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': ring_id,
                OP_ROLE_KEY: OpRole.Forward,
            })

S
sandyhouse 已提交
104
    def _broadcast_params(self, ring_id):
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        block = self.startup_program.global_block()
        for param in block.iter_parameters():
            if param.is_distributed:
                continue

            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

S
sandyhouse 已提交
120 121 122 123 124 125
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': param},
            outputs={'Out': param},
            attrs={'ring_id': ring_id,
                   OP_ROLE_KEY: OpRole.Forward})
126 127


128 129 130 131 132 133
class PipelineOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(PipelineOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []
134
        self.meta_optimizers_black_list = []
135 136 137 138 139 140

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(PipelineOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
        num_microbatches = user_defined_strategy.pipeline_configs['micro_batch']
S
sandyhouse 已提交
141 142 143 144 145 146
        endpoints = role_maker.get_trainer_endpoints()
        current_endpoint = endpoints[role_maker.worker_index()]
        self.local_rank = self._get_local_rank(current_endpoint, endpoints)
        self.wrapped_opt = PO(self.inner_opt,
                              num_microbatches=num_microbatches,
                              start_cpu_core_id=self.local_rank)
147 148 149 150 151 152 153 154

    def _can_apply(self):
        if self.user_defined_strategy.pipeline == True:
            return True
        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.pipeline = False
155
        dist_strategy.pipeline_configs = {}
156

S
sandyhouse 已提交
157 158 159 160 161 162 163 164
    def _get_local_rank(self, current_endpoint, endpoints):
        cur_node_endpoints = []
        cur_ip = current_endpoint.split(':')[0].strip()
        for ep in endpoints:
            if cur_ip == ep.split(':')[0].strip():
                cur_node_endpoints.append(ep)
        return cur_node_endpoints.index(current_endpoint)

165 166 167 168 169
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
170 171
        endpoints = self.role_maker.get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker.worker_index()]
S
sandyhouse 已提交
172 173
        node_num = _get_node_num(endpoints)
        gpus_per_node = len(endpoints) // node_num
174
        self.startup_program = startup_program
S
sandyhouse 已提交
175
        self.local_rank = self._get_local_rank(current_endpoint, endpoints)
176 177 178
        if startup_program is None:
            self.startup_program = fluid.default_startup_program()

S
sandyhouse 已提交
179 180 181 182 183 184 185 186 187
        if self.role_maker.worker_num() == 1:
            return self.inner_opt.minimize(loss, startup_program,
                                           parameter_list, no_grad_set)
        loss.block.program._pipeline_opt = dict()
        loss.block.program._pipeline_opt['local_rank'] = self.local_rank
        optimize_ops, params_grads, prog_list = \
            self.wrapped_opt.minimize(loss, startup_program,
                                      parameter_list, no_grad_set)

188 189 190 191 192 193 194 195 196 197 198
        assert prog_list
        self.main_program_list = prog_list
        self.main_program = loss.block.program
        nranks = len(endpoints)
        self.nranks = nranks
        self.nrings = len(self.main_program_list)

        self.rank = self.role_maker.worker_index()
        self.endpoints = endpoints
        self.current_endpoint = current_endpoint

S
sandyhouse 已提交
199
        pipeline_helper = PipelineHelper(self.role_maker)
200 201
        pipeline_helper.update_startup_program(self.startup_program)

S
sandyhouse 已提交
202
        self._transpile_main_program(loss, node_num, gpus_per_node)
203
        return optimize_ops, params_grads
204

S
sandyhouse 已提交
205 206 207
    def _transpile_main_program(self, loss, node_num, gpus_per_node):
        self._insert_loss_grad_ops(loss, gpus_per_node, node_num)
        for ring_id in range(1, node_num + 1):
208 209
            self._insert_allreduce_ops(ring_id)

S
sandyhouse 已提交
210
    def _insert_loss_grad_ops(self, loss, gpus_per_node, node_num):
211 212 213 214
        """
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        """
S
sandyhouse 已提交
215 216
        block = self.main_program_list[gpus_per_node - 1][
            'program'].global_block()
217 218 219 220 221 222 223 224 225
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
S
sandyhouse 已提交
226
                        'scale': 1.0 / node_num,
227 228 229 230
                        OP_ROLE_KEY: OpRole.Backward
                    })

    def _insert_allreduce_ops(self, ring_id):
S
sandyhouse 已提交
231
        block = self.main_program_list[ring_id - 1]['program'].global_block()
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        origin_block = self.main_program.global_block()
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_backward_op(op) and \
                OP_ROLE_VAR_KEY in op.attr_names:
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                offset = idx
                for i in range(0, len(op_role_var), 2):
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
                    origin_param = origin_block.vars[op_role_var[i]]
                    if origin_param.is_distributed:
                        continue
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={OP_ROLE_KEY: OpRole.Backward})
                        offset += 1

                    block._insert_op(
                        offset,
                        type='c_sync_calc_stream',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Backward
                        })

        if grad is None:
            return

        for idx, op in enumerate(block.ops):
            if is_optimizer_op(op):
                block._insert_op(
                    idx + ring_id,
                    type='c_sync_comm_stream',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={'ring_id': ring_id,
                           OP_ROLE_KEY: OpRole.Backward})
            break