optimizer.py 177.4 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
import logging
19
from collections import defaultdict
20

Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
23

24 25
from . import framework
from . import layers
26
from . import unique_name
27
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
28
from .clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops
29 30 31
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
32
from .layers import ops
33
from .regularizer import append_regularization_ops
34
from .dygraph import base as imperative_base
35
from .dygraph import no_grad
36
from .dygraph.learning_rate_scheduler import LearningRateDecay, _LearningRateEpochDecay
37 38 39
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
40
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
41
from .. import compat as cpt
42

43
__all__ = [
44 45 46 47
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
48 49 50 51
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer', 'DGCMomentumOptimizer', 'LambOptimizer',
    'ExponentialMovingAverage', 'PipelineOptimizer', 'LookaheadOptimizer',
    'RecomputeOptimizer'
52
]
Q
Qiao Longfei 已提交
53 54 55 56 57 58


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
59 60
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
61 62
    """

63
    @imperative_base.no_grad
64 65 66 67
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
68
                 grad_clip=None,
69
                 name=None):
70
        self._parameter_list = parameter_list
71
        self._name = name
L
lujun 已提交
72
        if framework.in_dygraph_mode():
M
minqiyang 已提交
73 74 75 76 77
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, LearningRateDecay):
                raise TypeError(
                    "learning rate should be float or LearningRateDecay, got %s here"
                    % type(learning_rate))
78
            if self._parameter_list is None:
79 80 81
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
82 83 84 85 86 87 88 89
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                        break
M
minqiyang 已提交
90 91 92 93 94 95 96
        else:
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, framework.Variable):
                raise TypeError(
                    "learning rate should be float or Variable, got %s here" %
                    type(learning_rate))

97 98 99 100 101
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
102
        self.regularization = regularization
103
        self._grad_clip = grad_clip
104
        self._learning_rate = learning_rate
D
dzhwinter 已提交
105 106
        # the learning rate type should be inferenced from loss
        self._dtype = None
107
        # each program should have a independent learning rate
108
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
109
        self._learning_rate_map = dict()
110
        if isinstance(self._learning_rate, framework.Variable):
111 112
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
113 114 115 116 117
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
118
        self.helper = None
119
        self._opti_name_list = []
H
hong 已提交
120
        self._accumulators_holder = {}
121
        self._param_device_map = dict()
H
hong 已提交
122 123 124 125

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
126 127
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
128 129 130

        Args: None
        Return:
T
tianshuo78520a 已提交
131
            state_dict(dict) : dict contains all the variable used by optimizer
H
hong 已提交
132 133 134 135 136
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
137 138 139 140 141 142

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
143 144 145 146 147 148 149 150

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
        # global step if use lr decay
        if isinstance(self._learning_rate, LearningRateDecay):
151 152 153 154
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
155 156 157
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32')

158 159
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp)
H
hong 已提交
160

161
                state_dict['global_step'] = var_temp
H
hong 已提交
162 163 164 165 166
        return state_dict

    @framework.dygraph_only
    def set_dict(self, state_dict):
        '''
T
tianshuo78520a 已提交
167
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
168 169 170 171 172 173 174 175

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
176

H
hong 已提交
177
                with fluid.dygraph.guard():
178
                    emb = fluid.dygraph.Embedding([10, 10])
179

H
hong 已提交
180
                    state_dict = emb.state_dict()
181
                    fluid.save_dygraph(state_dict, "paddle_dy")
182

183 184
                    adam = fluid.optimizer.Adam(learning_rate=fluid.layers.noam_decay( 100, 10000), 
                                                parameter_list=emb.parameters())
H
hong 已提交
185
                    state_dict = adam.state_dict()
186
                    fluid.save_dygraph(state_dict, "paddle_dy")
187

H
hong 已提交
188
                    para_state_dict, opti_state_dict = fluid.load_dygraph( "paddle_dy")
189

190
                    adam.set_dict(opti_state_dict)
H
hong 已提交
191 192 193 194

        '''

        if isinstance(self._learning_rate, LearningRateDecay):
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                assert 'global_step' in state_dict, \
                        'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
                    assert step_np.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( step_np.shape )

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
                    assert global_step.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( global_step.shape )
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                        type(global_step))
H
hong 已提交
217 218 219 220 221 222

        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
223
                var = var_tmp.value()
H
hong 已提交
224 225 226 227 228 229 230 231
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
232
                    load_para_np = load_para.numpy()
H
hong 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
                    raise RuntimeError("State dict type {} not supprt".format(
                        str(type(load_para))))

                assert model_np.shape == load_para_np.shape,  \
                                          "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                                                 item.name, model_np.shape, load_para_np.shape)

                assert model_np.dtype == load_para_np.dtype, \
                                          "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                                                item.name, model_np.dtype, load_para_np.dtype)

                tensor.set(load_para_np, framework._current_expected_place())
248

249 250
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
251

Q
Qiao Longfei 已提交
252
    def _create_global_learning_rate(self):
253 254 255
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
256 257 258 259 260 261 262 263 264 265 266 267
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
268
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
269
            elif isinstance(self._learning_rate, LearningRateDecay):
270 271 272
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
273
                raise TypeError(
274 275
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
276
        else:
277 278 279 280
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
281 282 283 284 285 286
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
287

288 289 290 291 292 293 294 295
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
296

297 298 299 300
    @framework.dygraph_only
    def current_step_lr(self):
        """
        .. note::
T
tianshuo78520a 已提交
301
          **This API is ONLY available in Dygraph mode**
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
        
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
                    
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
347
        if isinstance(current_lr, framework.Variable):
348 349 350 351
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
352 353 354
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
355 356 357 358 359 360 361
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
362
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
363 364 365 366
        """
        get global decayed learning rate
        :return:
        """
367 368
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
369
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
370

Q
Qiao Longfei 已提交
371 372 373 374 375
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

376 377 378 379
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
380 381
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
382
        else:
W
Wu Yi 已提交
383
            if param_lr == 1.0:
Y
yuyang18 已提交
384
                return self._global_learning_rate()
W
Wu Yi 已提交
385
            else:
X
Xin Pan 已提交
386 387 388
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
389
                    return self._global_learning_rate() * param_lr
390 391 392 393 394 395 396

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
397
        """
398 399
        pass

400
    def _finish_update(self, block, parameters_and_grads):
401 402 403 404 405 406 407 408
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
409
            None
410 411 412
        """
        pass

413 414 415 416 417
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
418
                         shape=None,
419
                         type=None,
420
                         device=None):
421 422 423 424 425 426 427 428 429
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
430 431
        if self._name is not None:
            name = self._name + "_" + name
432 433
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
434
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
435
                return self._accumulators[name][param.name]
436
            raise Exception("Accumulator {} already exists for parameter {}".
437
                            format(name, param.name))
438 439
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
440
        assert isinstance(self.helper, LayerHelper)
441 442 443 444 445

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
446
        var = self.helper.create_global_variable(
447
            name=var_name,
Q
Qiao Longfei 已提交
448
            persistable=True,
F
fengjiayi 已提交
449
            dtype=dtype or param.dtype,
450
            type=param.type if type is None else type,
H
hong 已提交
451 452
            shape=shape,
            belong_to_optimizer=True)
453 454 455 456 457
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
458 459 460 461 462 463 464

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
465
        self._accumulators[name][param.name] = var
466
        return var
467 468 469 470 471 472 473 474 475 476 477

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
478 479
        if self._name is not None:
            name = self._name + "_" + name
480 481 482 483 484 485
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

486 487 488 489 490 491 492 493 494 495 496 497
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
498
                        break
499 500 501 502 503 504 505

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

506
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
507 508 509
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
510
          parameters_and_grads(list(tuple(Variable, Variable))):
511
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
512 513

        Returns:
514
          return_op_list: a list of operators that will complete one step of
515 516 517
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
518
        """
519 520 521 522 523
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
524
        # for parameters and extend _finish_update method to add custom ops.
525

526
        # Allways called under program_guard use global block as loss block
527 528 529
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

530
        global_block = framework.default_main_program().global_block()
531 532 533 534 535 536 537 538 539
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
540
        self.helper = LayerHelper(self.__class__.__name__)
541
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
542
        self._create_accumulators(
543
            target_block,
C
chengduo 已提交
544
            [p[0] for p in parameters_and_grads if p[0].trainable])
545 546
        self._create_global_learning_rate()

M
minqiyang 已提交
547
        if framework.in_dygraph_mode():
548 549 550
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
551 552
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
553 554 555 556 557 558 559
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
560 561 562 563 564
                        device = self._get_device_for_param(param_and_grad[0]
                                                            .name)
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
565 566 567

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
568
        self._finish_update(target_block, parameters_and_grads)
569

570 571
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
572 573

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
574 575 576 577 578 579 580 581 582
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
583 584
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
600 601 602 603 604 605 606 607 608 609 610 611 612
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
613 614
        return new_param_grads, (table_param, table_grad), sgd_op

615 616 617
    def _append_dgc_ops(self, param_and_grad):
        pass

618 619 620 621 622 623 624
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
625
        The first part of ``minimize``, do auto-diff to append backward operations for
626 627 628
        the current program.

        Args:
629 630 631 632
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
633
            parameter_list (list, optional): List of ``Variable`` or ``Variable.name`` to update
634 635
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
636
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
637 638 639
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
640

641
        Return:
642 643
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
644

645
        Examples:
646
            See examples in ``apply_gradients``.
647
        """
648
        act_no_grad_set = None
L
Leo Chen 已提交
649
        if framework.in_dygraph_mode():
650
            pass
L
Leo Chen 已提交
651 652
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
653

C
chengduo 已提交
654
        self._dtype = loss.dtype
L
lujun 已提交
655
        if framework.in_dygraph_mode():
C
chengduo 已提交
656
            params_grads = []
657
            for param in self._parameter_list:
C
chengduo 已提交
658 659
                if not param.trainable:
                    continue
660
                if param._grad_ivar() is not None:
C
chengduo 已提交
661
                    # create gradient variable
662
                    grad_var = param._grad_ivar()
C
chengduo 已提交
663
                    params_grads.append((param, grad_var))
664
        else:
C
chengduo 已提交
665 666 667 668 669
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
670 671 672 673
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
674 675
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list
C
chengduo 已提交
676 677
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
678
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
679 680 681 682
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads
683 684 685 686 687 688 689 690

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
691

692 693
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
694

695 696 697
        Examples:
            .. code-block:: python

698
                import paddle.fluid as fluid
699 700 701 702 703 704 705
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
706

707 708 709 710 711
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

712
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
713 714 715 716
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
717 718 719 720 721 722 723 724 725 726 727 728

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

C
chengduo 已提交
729 730 731 732 733 734 735 736 737 738 739 740
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
741
        if framework.in_dygraph_mode():
C
chengduo 已提交
742 743
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
744 745
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
746 747
                params_grads = append_regularization_ops(params_grads,
                                                         self.regularization)
C
chengduo 已提交
748 749 750 751 752 753 754
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
755
    def _get_no_grad_set(self, loss, no_grad_set=None):
756
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
757 758 759 760 761 762 763 764
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

796
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
797 798
    def minimize(self,
                 loss,
799
                 startup_program=None,
Q
Qiao Longfei 已提交
800
                 parameter_list=None,
801
                 no_grad_set=None):
802
        """
803
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
804

805
        Args:
806 807 808 809
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
810
            parameter_list (list, optional): List of ``Variable`` or ``Variable.name`` to update
811 812
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
813
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
814
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
815

816
        Returns:
817 818 819
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
820 821 822
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.
823 824 825

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
826
        """
C
chengduo 已提交
827
        assert isinstance(loss, Variable), "The loss should be an Variable."
828

829 830
        parameter_list = parameter_list if parameter_list \
            else self._parameter_list
C
chengduo 已提交
831 832 833 834 835
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
836

C
chengduo 已提交
837 838
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
839

Q
Qiao Longfei 已提交
840
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
841 842 843


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
844 845 846 847 848 849 850
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

851 852 853
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
854 855 856
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
857 858 859 860 861
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
862 863 864 865
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
866 867
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
868 869 870 871

    Examples:
        .. code-block:: python

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
897 898
    """

899 900 901 902
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
903
                 grad_clip=None,
904
                 name=None):
Q
Qiao Longfei 已提交
905
        assert learning_rate is not None
Q
Qiao Longfei 已提交
906
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
907
            learning_rate=learning_rate,
908
            parameter_list=parameter_list,
X
Xin Pan 已提交
909
            regularization=regularization,
910
            grad_clip=grad_clip,
X
Xin Pan 已提交
911
            name=name)
Q
Qiao Longfei 已提交
912 913
        self.type = "sgd"

914
    @no_grad
915
    def _append_optimize_op(self, block, param_and_grad):
916
        lr = self._create_param_lr(param_and_grad)
917
        if framework.in_dygraph_mode():
918 919 920
            core.ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                         param_and_grad[0])
            return None
921

922
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
923 924 925 926 927 928
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
929
                "LearningRate": lr
Q
Qiao Longfei 已提交
930
            },
M
minqiyang 已提交
931 932
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
933 934

        return sgd_op
935 936 937


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950 951
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

952
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
953 954 955

        & else:

Q
qiaolongfei 已提交
956
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
957

958 959 960 961
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
962 963 964
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
965
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
966 967 968 969 970
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
971 972 973 974
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
975 976
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
977 978 979 980

    Examples:
        .. code-block:: python

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1006 1007 1008
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
1009 1010 1011
    def __init__(self,
                 learning_rate,
                 momentum,
1012
                 parameter_list=None,
X
Xin Pan 已提交
1013 1014
                 use_nesterov=False,
                 regularization=None,
1015
                 grad_clip=None,
X
Xin Pan 已提交
1016
                 name=None):
1017 1018
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
1019
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
1020
            learning_rate=learning_rate,
1021
            parameter_list=parameter_list,
X
Xin Pan 已提交
1022
            regularization=regularization,
1023
            grad_clip=grad_clip,
X
Xin Pan 已提交
1024
            name=name)
1025 1026
        self.type = "momentum"
        self._momentum = momentum
1027
        self._use_nesterov = bool(use_nesterov)
1028 1029 1030 1031 1032

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1033
            self._add_accumulator(self._velocity_acc_str, p)
1034 1035 1036 1037 1038 1039

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1040 1041 1042 1043 1044 1045 1046 1047
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _ = core.ops.momentum(param_and_grad[0], param_and_grad[1],
                                     velocity_acc, lr, param_and_grad[0],
                                     velocity_acc, 'mu', self._momentum,
                                     'use_nesterov', self._use_nesterov)
            return None
1048

1049
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1050 1051 1052 1053
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1054
            "LearningRate": [lr]
1055 1056 1057 1058 1059 1060
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
1061 1062 1063
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
1064 1065 1066
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1067
            stop_gradient=True)
1068 1069

        return momentum_op
1070 1071


1072
class DGCMomentumOptimizer(Optimizer):
1073
    """
1074
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1075

G
gongweibao 已提交
1076
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1077 1078
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1079
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1080 1081 1082

    Eventually, these gradients become large enough to be transmitted.

1083
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1084

G
gongweibao 已提交
1085
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1086 1087 1088 1089

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1090

1091 1092
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1093

1094
        2. Call momentum to optimize the cost.
1095 1096

    Args:
1097 1098
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1099
        momentum (float): Momentum factor.
G
gongweibao 已提交
1100
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1101 1102 1103 1104 1105 1106 1107
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
1108 1109 1110
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1111
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1112 1113 1114 1115 1116
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1117 1118 1119
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support 
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None, 
            meaning there is no gradient clipping.
1120 1121
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1122 1123 1124 1125

    Examples:
        .. code-block:: python

1126
            import paddle.fluid as fluid
1127
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1128 1129 1130 1131 1132
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1133 1134

    """
1135 1136
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1137 1138 1139 1140 1141 1142 1143

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1144
                 parameter_list=None,
1145 1146 1147
                 use_nesterov=False,
                 num_trainers=None,
                 regularization=None,
1148
                 grad_clip=None,
1149
                 name=None):
Z
zhongpu 已提交
1150 1151
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1152 1153 1154 1155

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1156 1157 1158 1159
        assert learning_rate is not None
        assert momentum is not None
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1160
            parameter_list=parameter_list,
1161
            regularization=regularization,
1162
            grad_clip=grad_clip,
1163 1164 1165 1166
            name=name)
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1167

1168
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1169
        self._rampup_begin_step = rampup_begin_step
1170 1171
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1172

1173
        self._rampup_begin_step_var = None
1174
        self._global_step_var = None
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
            assert isinstance(
                num_trainers, int
            ), "The type of num_trainers should be 'int', but received %s" % type(
                value)
            assert num_trainers > 0, "The value of num_trainers should be greater than 0!"
1187 1188

            self._num_trainers = num_trainers
1189
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1190

1191 1192
        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization)
1193

1194 1195 1196
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1197

1198 1199
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1200
            from .regularizer import L1Decay, L2Decay
1201 1202 1203 1204
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1205 1206
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1207
        return regular_type, regular_coeff
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1235 1236

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1237 1238 1239
            type = "momentum"
        else:
            type = "dgc_momentum"
1240 1241 1242 1243 1244
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1245
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1246 1247 1248

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
1249 1250 1251 1252
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
1253 1254 1255
            stop_gradient=True)
        return dgc_momentum_op

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(value), force_cpu=True))
            counter.stop_gradient = True

        return counter

1288 1289 1290 1291 1292 1293
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1294
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1295

1296 1297 1298
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1)

1299 1300 1301 1302 1303
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1304
            name=core.dgc.kDGCRampUpBeginStepName(),
1305 1306 1307
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1308 1309
        self.helper = LayerHelper(self.__class__.__name__)

1310
        for param_var, grad_var in param_and_grads:
1311 1312 1313
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1314
            if not self._is_use_dgc(param_var, grad_var):
1315 1316
                continue

1317
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1318 1319 1320 1321 1322

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1323
                name=param_var.name + core.dgc.kDGCKName(),
1324 1325 1326 1327 1328 1329 1330
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1331
                name=param_var.name + core.dgc.kDGCEncodedName(),
1332 1333 1334
                value=0.0,
                force_cpu=False)

1335 1336 1337 1338 1339 1340 1341 1342
            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False)

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
1362 1363
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
1364
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1365
                         encoded_var, gather_var)
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1381 1382
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1383 1384 1385 1386 1387

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
1388
            type="dgc_clip_by_norm",
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
1401
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
1402 1403

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1404
                encoded_var, gather_var):
1405 1406
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1407

1408 1409 1410 1411 1412 1413 1414
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer)

1415 1416 1417 1418 1419 1420
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
1421
                "Param": param_var,
1422 1423
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
1424 1425 1426 1427 1428 1429
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
1430 1431
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
1432 1433 1434 1435 1436 1437
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
1438
                "rampup_step": float(self._rampup_step),
1439 1440
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
1441 1442 1443 1444 1445 1446 1447 1448
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1449
    @imperative_base.no_grad
1450 1451 1452 1453 1454 1455 1456
    def apply_gradients(self, params_grads):
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
1457
        # DGC clip and regularization in optimizer.backward
1458 1459 1460 1461 1462 1463
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

1464
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1465 1466 1467 1468 1469
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

        not_dgc_params_grads = append_regularization_ops(not_dgc_params_grads,
                                                         self.regularization)

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

1500 1501 1502 1503 1504 1505
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
1506 1507 1508
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1509 1510 1511 1512 1513
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1514 1515 1516 1517
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1518 1519
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1520 1521 1522 1523

    Examples:
        .. code-block:: python

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1540 1541 1542 1543 1544 1545 1546 1547
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
1548
                 parameter_list=None,
1549
                 regularization=None,
1550
                 grad_clip=None,
1551 1552 1553 1554 1555
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1556
            parameter_list=parameter_list,
1557
            regularization=regularization,
1558
            grad_clip=grad_clip,
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
1593 1594
            },
            stop_gradient=True)
1595 1596 1597 1598

        return momentum_op


1599
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
1600
    """
1601 1602
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1603

1604
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1605 1606 1607 1608 1609 1610 1611

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1612 1613 1614 1615 1616 1617
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
1618 1619 1620
    for numerical stability to avoid the division by zero error.

    Args:
1621 1622 1623 1624
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
1625 1626 1627
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1628 1629 1630 1631 1632
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1633 1634 1635 1636
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1637 1638 1639 1640 1641
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
1642 1643 1644 1645

    Examples:
        .. code-block:: python

1646
            import numpy as np
1647
            import paddle.fluid as fluid
1648 1649

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
1650
            inp = fluid.data(name="inp", shape=[2, 2])
1651 1652
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
1653
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
1654 1655 1656 1657 1658 1659 1660
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1661 1662 1663
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1664 1665 1666
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
1667
                 parameter_list=None,
X
Xin Pan 已提交
1668
                 regularization=None,
1669
                 grad_clip=None,
1670
                 name=None,
X
xuezhong 已提交
1671
                 initial_accumulator_value=0.0):
1672 1673
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1674
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1675
            learning_rate=learning_rate,
1676
            parameter_list=parameter_list,
X
Xin Pan 已提交
1677
            regularization=regularization,
1678
            grad_clip=grad_clip,
X
Xin Pan 已提交
1679
            name=name)
1680 1681
        self.type = "adagrad"
        self._epsilon = epsilon
1682
        self.initial_accumulator_value = initial_accumulator_value
1683 1684 1685 1686 1687

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Z
zhongpu 已提交
1688 1689 1690 1691
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value)
1692 1693 1694 1695 1696 1697

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1698
        # Create the adagrad optimizer op
1699 1700 1701 1702 1703 1704
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
1705
                "LearningRate": self._create_param_lr(param_and_grad)
1706 1707 1708
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1709 1710
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1711 1712

        return adagrad_op
1713 1714 1715


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
1716
    """
T
tianshuo78520a 已提交
1717
    The Adam optimizer uses an optimization described at the end
1718 1719 1720 1721 1722
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

1737 1738
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
1739
    Args:
1740 1741
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
1742 1743
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1744
            The default value is 0.9.
1745 1746
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1747 1748 1749
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
1750 1751 1752
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1753 1754 1755 1756 1757
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1758 1759 1760 1761
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
Q
qiaolongfei 已提交
1772 1773 1774 1775

    Examples:
        .. code-block:: python

1776 1777 1778 1779 1780 1781
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
1782 1783
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
1799

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
1817
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate):
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

                    return beta1, beta2

                beta1, beta2 = get_decayed_betas(0.9, 0.99, 1e5, 0.9)
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
1846
                                                    beta1=beta1,
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
                                                    beta2=beta2)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
1858 1859 1860
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
1861 1862
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
1863 1864 1865 1866 1867

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1868
                 epsilon=1e-8,
1869
                 parameter_list=None,
X
Xin Pan 已提交
1870
                 regularization=None,
1871
                 grad_clip=None,
Q
Qiao Longfei 已提交
1872
                 name=None,
Q
Qiao Longfei 已提交
1873
                 lazy_mode=False):
1874 1875 1876 1877
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1878
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
1879
            learning_rate=learning_rate,
1880
            parameter_list=parameter_list,
X
Xin Pan 已提交
1881
            regularization=regularization,
1882
            grad_clip=grad_clip,
X
Xin Pan 已提交
1883
            name=name)
1884 1885 1886 1887
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
1888
        self._lazy_mode = lazy_mode
1889 1890 1891 1892 1893 1894

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
1895 1896
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
1897 1898 1899
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
1900 1901
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
1902
                shape=[1],
1903
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
Q
qiaolongfei 已提交
1904 1905 1906
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
1907 1908
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
1909
                shape=[1],
1910
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
1911 1912 1913 1914 1915 1916 1917 1918

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
1919 1920 1921 1922
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])
1923
        lr = self._create_param_lr(param_and_grad)
1924
        # create the adam optimize op
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

        if framework.in_dygraph_mode():
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
            _, _, _, _, _ = core.ops.adam(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'epsilon', self._epsilon,
                'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread',
                1000, 'beta1', _beta1, 'beta2', _beta2)

            return None

1940
        inputs = {
1941 1942
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
1943
            "LearningRate": [lr],
1944 1945 1946 1947
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
1948 1949
        }
        outputs = {
1950 1951 1952 1953 1954
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
        }
        attrs = {
            "epsilon": self._epsilon,
            "lazy_mode": self._lazy_mode,
            "min_row_size_to_use_multithread": 1000
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2

1971 1972
        adam_op = block.append_op(
            type=self.type,
1973 1974 1975
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1976
            stop_gradient=True)
1977 1978 1979

        return adam_op

1980 1981

class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
1982
    """
1983 1984 1985 1986
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
1987

1988
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2002
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
2016 2017 2018
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2019 2020 2021 2022 2023
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2024 2025 2026 2027
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2028 2029 2030 2031 2032 2033
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2048
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2049 2050
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
2051
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2052 2053 2054 2055 2056 2057 2058 2059 2060
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2061 2062 2063
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2064
    _beta1_pow_acc_str = "beta1_pow_acc"
2065 2066 2067 2068 2069

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2070
                 epsilon=1e-8,
2071
                 parameter_list=None,
X
Xin Pan 已提交
2072
                 regularization=None,
2073
                 grad_clip=None,
X
Xin Pan 已提交
2074
                 name=None):
2075 2076 2077 2078
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2079
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
2080
            learning_rate=learning_rate,
2081
            parameter_list=parameter_list,
X
Xin Pan 已提交
2082
            regularization=regularization,
2083
            grad_clip=grad_clip,
X
Xin Pan 已提交
2084
            name=name)
2085 2086 2087 2088 2089 2090 2091 2092
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2093 2094
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
2095 2096 2097 2098 2099
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])
2100 2101 2102 2103 2104 2105 2106

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2107 2108
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2109 2110 2111 2112 2113 2114
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
2115
                "LearningRate": self._create_param_lr(param_and_grad),
2116 2117
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
2118
                "Beta1Pow": beta1_pow_acc
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
2129 2130
            },
            stop_gradient=True)
2131 2132 2133

        return adamax_op

2134
    def _finish_update(self, block, parameters_and_grads):
2135 2136 2137
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2138
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2139
            if grad is None or param.trainable is False:
2140
                continue
X
Xin Pan 已提交
2141 2142
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
2143 2144
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
2145
                block.append_op(
2146 2147 2148
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
2149 2150
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
2151 2152


2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
class DpsgdOptimizer(Optimizer):
    """
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
2191 2192 2193
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2194 2195 2196 2197 2198 2199 2200 2201
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2202 2203
                 sigma=1e-8,
                 parameter_list=None):
2204 2205 2206 2207
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2208 2209
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list)
2210 2211 2212 2213
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2214 2215 2216 2217 2218 2219 2220
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2221 2222 2223 2224 2225

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2226 2227 2228
        if self._seed == None:
            self._seed = 0

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
        dpsgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            attrs={
                "clip": self._clip,
                "batch_size": self._batch_size,
Z
zhongpu 已提交
2240 2241
                "sigma": self._sigma,
                "seed": self._seed
2242 2243 2244 2245 2246 2247
            },
            stop_gradient=True)

        return dpsgd_op


2248
class DecayedAdagradOptimizer(Optimizer):
2249
    """
2250 2251 2252
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2253

2254
    The parameter ``param_out`` update rule with gradient ``grad``:
2255 2256 2257 2258 2259 2260 2261

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2262 2263 2264 2265
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2266 2267 2268
    stability to avoid the division by zero error.

    Args:
2269 2270 2271 2272 2273
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
2274 2275 2276
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2277 2278 2279 2280 2281
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2282 2283 2284 2285
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2286 2287 2288 2289 2290 2291
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2292 2293 2294 2295

    Examples:
        .. code-block:: python

2296 2297
            import paddle.fluid as fluid

2298 2299 2300 2301
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2302
            optimizer.minimize(cost)
2303 2304 2305
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2306 2307 2308 2309
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
2310
                 parameter_list=None,
X
Xin Pan 已提交
2311
                 regularization=None,
2312
                 grad_clip=None,
X
Xin Pan 已提交
2313
                 name=None):
2314 2315 2316 2317
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
2318
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2319
            learning_rate=learning_rate,
2320
            parameter_list=parameter_list,
X
Xin Pan 已提交
2321
            regularization=regularization,
2322
            grad_clip=grad_clip,
X
Xin Pan 已提交
2323
            name=name)
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
2351 2352
            attrs={"epsilon": self._epsilon,
                   "decay": self._decay},
M
minqiyang 已提交
2353
            stop_gradient=True)
2354 2355

        return decayed_adagrad_op
2356 2357


2358
class AdadeltaOptimizer(Optimizer):
2359
    """
Z
Zeng Jinle 已提交
2360
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2361

Z
Zeng Jinle 已提交
2362
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
2363 2364 2365
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
2366

Z
Zeng Jinle 已提交
2367 2368
    .. math::

Z
Zeng Jinle 已提交
2369
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
2370

Z
Zeng Jinle 已提交
2371
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
2372

Z
Zeng Jinle 已提交
2373
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
2374 2375

    Args:
Z
Zeng Jinle 已提交
2376 2377 2378
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
2379 2380 2381
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2382 2383 2384 2385 2386
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2387 2388 2389 2390
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2391 2392 2393
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
2394 2395 2396 2397

    Examples:
        .. code-block:: python

2398
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
2399

2400
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
2401 2402
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
2403 2404
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
2405

Z
Zeng Jinle 已提交
2406 2407 2408 2409
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
2410
    """
2411

2412 2413 2414
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
2415 2416 2417 2418
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
2419
                 parameter_list=None,
X
Xin Pan 已提交
2420
                 regularization=None,
2421
                 grad_clip=None,
X
Xin Pan 已提交
2422
                 name=None):
2423 2424 2425 2426 2427 2428
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
2429
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
2430
            learning_rate=learning_rate,
2431
            parameter_list=parameter_list,
X
Xin Pan 已提交
2432
            regularization=regularization,
2433
            grad_clip=grad_clip,
X
Xin Pan 已提交
2434
            name=name)
2435 2436 2437 2438 2439
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
2440 2441
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2442 2443 2444 2445 2446 2447

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
2448 2449
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
2471 2472
                   "rho": self._rho},
            stop_gradient=True)
2473 2474 2475 2476

        return adadelta_op


Q
qingqing01 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
2487
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2488 2489 2490 2491

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
2492
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
2493 2494 2495 2496 2497 2498

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
2499
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2500

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
2515 2516 2517 2518
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
2519
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
2520 2521 2522 2523 2524
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


2525 2526 2527
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
2528
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
2529
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
2530
        momentum(float): :math:`\\beta` in equation is the momentum term,
2531
            default is 0.0.
2532 2533 2534 2535
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
2536 2537 2538
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2539 2540 2541 2542 2543
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2544 2545 2546 2547
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2548 2549
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
2550 2551 2552 2553 2554 2555 2556

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
2582 2583 2584 2585
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
2586
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
2587 2588 2589 2590 2591 2592

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
2593
                 centered=False,
2594
                 parameter_list=None,
X
Xin Pan 已提交
2595
                 regularization=None,
2596
                 grad_clip=None,
X
Xin Pan 已提交
2597
                 name=None):
Q
qingqing01 已提交
2598
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
2599
            learning_rate=learning_rate,
2600
            parameter_list=parameter_list,
X
Xin Pan 已提交
2601
            regularization=regularization,
2602
            grad_clip=grad_clip,
X
Xin Pan 已提交
2603
            name=name)
Q
qingqing01 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
2617
        self._centered = centered
Q
qingqing01 已提交
2618 2619 2620 2621 2622 2623 2624 2625

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
2626
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
2627 2628 2629 2630 2631 2632 2633 2634 2635

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
2636 2637
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
2638 2639 2640 2641 2642 2643 2644
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
2645
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
2646 2647 2648 2649 2650
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
2651 2652
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
2653 2654 2655 2656
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
2657 2658
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
2659 2660
            },
            stop_gradient=True)
Q
qingqing01 已提交
2661 2662 2663 2664

        return rmsprop_op


Q
qiaolongfei 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

2705 2706 2707 2708 2709
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
2710 2711 2712
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2713 2714 2715 2716 2717
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2718 2719 2720 2721
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2722 2723
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
2724 2725 2726 2727 2728 2729 2730

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
2755

2756
    NOTE:
C
chengduo 已提交
2757
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
2758 2759 2760 2761 2762
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
2763 2764 2765 2766 2767
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
2768
                 parameter_list=None,
X
Xin Pan 已提交
2769
                 regularization=None,
2770
                 grad_clip=None,
X
Xin Pan 已提交
2771
                 name=None):
Q
qiaolongfei 已提交
2772
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
2773
            learning_rate=learning_rate,
2774
            parameter_list=parameter_list,
X
Xin Pan 已提交
2775
            regularization=regularization,
2776
            grad_clip=grad_clip,
X
Xin Pan 已提交
2777
            name=name)
Q
qiaolongfei 已提交
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
M
minqiyang 已提交
2818 2819
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
2820 2821 2822 2823

        return ftrl_op


Y
Yibing Liu 已提交
2824 2825 2826 2827 2828 2829
class LambOptimizer(AdamOptimizer):
    """
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
2830 2831
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
2832 2833 2834 2835 2836

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
2837
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
2838

Y
Yibing Liu 已提交
2839
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
2840

Y
Yibing Liu 已提交
2841
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
2842

Y
Yibing Liu 已提交
2843
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
2844 2845 2846 2847 2848 2849


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
2850 2851 2852 2853 2854 2855 2856 2857
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
2858 2859 2860
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2861 2862 2863 2864 2865
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2866 2867 2868 2869
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
Y
Yibing Liu 已提交
2870 2871 2872 2873 2874
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
2875 2876 2877 2878 2879 2880

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
2881
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
2882 2883 2884
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
2885 2886 2887 2888 2889
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
2890 2891 2892 2893
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Y
Yibing Liu 已提交
2894
    # these two not used in op temporarily
Y
Yibing Liu 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
2904
                 parameter_list=None,
Y
Yibing Liu 已提交
2905
                 regularization=None,
2906
                 grad_clip=None,
Y
Yibing Liu 已提交
2907
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
2908 2909 2910 2911 2912 2913 2914 2915
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
2916
            parameter_list=parameter_list,
Y
Yibing Liu 已提交
2917
            regularization=regularization,
2918
            grad_clip=grad_clip,
Y
Yibing Liu 已提交
2919 2920 2921 2922 2923 2924
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
2925
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
2926 2927 2928

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
2929
        block.program._use_lamb = True
Y
Yibing Liu 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
2940 2941 2942 2943 2944 2945
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay

Y
Yibing Liu 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
Y
Yibing Liu 已提交
2967
                "weight_decay": weight_decay
Y
Yibing Liu 已提交
2968 2969 2970 2971 2972 2973
            },
            stop_gradient=True)

        return lamb_op


2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
2987
Dpsgd = DpsgdOptimizer
2988
DecayedAdagrad = DecayedAdagradOptimizer
2989
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
2990
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
2991
Ftrl = FtrlOptimizer
2992
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
2993
Lamb = LambOptimizer
2994 2995 2996


class ModelAverage(Optimizer):
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
    """
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3016

3017 3018 3019 3020 3021 3022 3023 3024 3025
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3026 3027

    Args:
3028 3029 3030
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3031 3032 3033 3034 3035
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3036 3037 3038
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3039

3040
    Examples:
Q
qiaolongfei 已提交
3041 3042 3043

      .. code-block:: python

3044 3045 3046 3047 3048 3049
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3050

3051 3052 3053 3054
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3055
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3056 3057 3058 3059 3060 3061 3062 3063
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3064
                                                         max_average_window=12500)
3065 3066

            exe.run(startup_program)
3067 3068 3069 3070 3071
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3072 3073

            # apply ModelAverage
3074
            with model_average.apply(exe):
3075 3076 3077 3078
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3079 3080 3081
    """

    def __init__(self,
W
wanghaoshuang 已提交
3082
                 average_window_rate,
3083 3084
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
3085 3086
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
3087 3088
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support ModelAverage.")
X
Xin Pan 已提交
3089 3090
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
3091 3092 3093
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3094

3095
        self.params_grads = []
3096 3097
        for param in framework.default_main_program().global_block(
        ).all_parameters():
3098
            if param.do_model_average != False:
3099
                grad = param.block.create_var(
3100 3101
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
3102 3103
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
3104
                    stop_gradient=True)
3105
                self.params_grads.append((param, grad))
3106

3107
        for param, grad in self.params_grads:
3108 3109
            if grad is None:
                continue
X
Xin Pan 已提交
3110 3111
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
3112
                self._append_average_accumulate_op(param)
3113

3114 3115 3116 3117
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3118
                self._add_average_apply_op(block, param_grad)
3119 3120 3121 3122 3123

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3124
                self._add_average_restore_op(block, param_grad)
3125

3126
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3127 3128 3129 3130 3131 3132
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3133
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
3134
        old_num_accumulates = block._clone_variable(
3135
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
3136
        num_updates = block._clone_variable(
3137 3138 3139 3140 3141 3142
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3143 3144 3145 3146
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3147
        ops._elementwise_div(x=sum, y=tmp, out=param)
3148 3149

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3150 3151
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
3189 3190
            },
            stop_gradient=True)
3191

S
rename  
sneaxiy 已提交
3192
    @signature_safe_contextmanager
3193
    def apply(self, executor, need_restore=True):
3194 3195
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
3196 3197

        Args:
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
3242
        """
3243 3244 3245 3246 3247 3248
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
3249 3250

    def restore(self, executor):
3251 3252
        """
        Restore ``Parameter`` values of current model.
3253 3254
        
        Args:
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
3299
        """
3300
        executor.run(self.restore_program)
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310


class ExponentialMovingAverage(object):
    """
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

3311
        \\text{EMA}_0 & = 0
3312

3313 3314
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
3315 3316 3317 3318
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
3340 3341 3342


    Args:
Y
Yibing Liu 已提交
3343 3344 3345 3346 3347 3348 3349
	decay (float, optional): The exponential decay rate, usually close to 1, such as 
            0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None): If not `None`, schedule the decay rate. 
            Default None.
        name (str|None): For detailed information, please refer to 
            :ref:`api_guide_Name`. Usually name is no need to set and None by 
            default.
3350 3351 3352 3353 3354


    Examples:

	.. code-block:: python
3355 3356 3357 3358 3359

	    import numpy
	    import paddle
	    import paddle.fluid as fluid

Y
Yibing Liu 已提交
3360
	    data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
3361 3362 3363 3364 3365 3366 3367 3368
	    hidden = fluid.layers.fc(input=data, size=10)
	    cost = fluid.layers.mean(hidden)

	    test_program = fluid.default_main_program().clone(for_test=True)

	    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
	    optimizer.minimize(cost)

3369
	    global_steps = fluid.layers.autoincreased_step_counter()
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	    ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
	    ema.update()

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    for pass_id in range(3):
		for batch_id in range(6):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=fluid.default_main_program(),
			feed={'x': data}, 
			fetch_list=[cost.name])

		# usage 1
		with ema.apply(exe):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
			    

		 # usage 2
		with ema.apply(exe, need_restore=False):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
		ema.restore(exe)
3399 3400
    """

3401
    def __init__(self, decay=0.999, thres_steps=None, name=None):
Z
zhongpu 已提交
3402 3403 3404
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
3405
        self._decay = decay
3406
        self._thres_steps = thres_steps
3407
        self._name = name if name is not None else ''
3408 3409
        self._decay_var = self._get_ema_decay()

3410
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
3411
        self._params_tmps = []
3412
        for param in default_main_program().global_block().all_parameters():
3413 3414 3415 3416 3417 3418 3419
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
3420
                self._params_tmps.append((param, tmp))
3421

Y
Yibing Liu 已提交
3422 3423
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
3424 3425
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
3426
                self._ema_vars[param.name] = self._create_ema_vars(param)
3427 3428 3429 3430

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
3431
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
3432
            for param, tmp in self._params_tmps:
3433 3434
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
3435
                ema = block._clone_variable(self._ema_vars[param.name])
3436
                layers.assign(input=param, output=tmp)
3437
                # bias correction
3438 3439 3440
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
                        layers.assign(output=ema, input=ema / (1.0 - decay_pow))
3441 3442 3443 3444 3445
                layers.assign(input=ema, output=param)

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
3446
            for param, tmp in self._params_tmps:
3447 3448 3449 3450
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
3473 3474 3475 3476 3477 3478 3479
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True)
        global_step = layers.cast(global_step, "float32")
3480
        decay_var = block._clone_variable(self._decay_var)
3481 3482
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
3483

Y
Yibing Liu 已提交
3484
    def _create_ema_vars(self, param):
3485 3486 3487 3488 3489 3490 3491 3492 3493
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
3494 3495 3496 3497 3498
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
3499 3500
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
3501
        param_master_emas = []
Y
Yibing Liu 已提交
3502 3503 3504 3505
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
3506
                if param.name + '.master' in self._ema_vars:
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
3524

3525 3526 3527 3528 3529 3530 3531
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
3532 3533
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
3549 3550 3551


class PipelineOptimizer(object):
3552 3553
    """
    Pipeline Optimizer
H
hutuxian 已提交
3554

T
tianshuo78520a 已提交
3555
    Train with pipeline mode. The program will be split by cut_list. 
H
hutuxian 已提交
3556 3557

    If the len of cut_list is k, then the whole program (including \
T
tianshuo78520a 已提交
3558
    backward part) will be split to 2*k-1 sections. 
H
hutuxian 已提交
3559 3560 3561 3562
    
    So the length of place_list and concurrency_list must be also 2*k-1.

    Note: Though the asynchronous mode is applied in pipeline training to speed up, \
3563
    the final performance depends on the training progress of each pipeline heavily.
H
hutuxian 已提交
3564 3565 3566

    And we will try the synchronous mode in the future.

3567
    Args:
H
hutuxian 已提交
3568 3569 3570 3571
        optimizer (Optimizer): The based optimizer, such as SGD.
        cut_list (list of Variable list): The cut variable of the main_program.
        place_list (list of Place): The place where the section will run on.
        concurrency_list (list of int): The concurrency degree.
3572 3573
        queue_size (int): Each section will consume scopes from its in-scope queue 
                        and produce scopes to out-scope queue. And this parameter 
H
hutuxian 已提交
3574 3575 3576 3577
                        specify the scope queue size. [Optional. Default: 30].
        sync_steps (int): The synchronization steps between different cards. [Optional. Default: 1].
        start_cpu_core_id (int): specify the first cpu core id. [Optional. Default:0].

3578 3579
    Examples:
        .. code-block:: python
H
hutuxian 已提交
3580

3581
            import paddle.fluid as fluid
H
hutuxian 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
            y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
            emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
            emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)
            concat = layers.concat([emb_x, emb_y], axis=1)
            fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
            loss = layers.reduce_mean(fc)
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer,
                    cut_list=[[emb_x, emb_y], [loss]],
                    place_list=[fluid.CPUPlace(), fluid.CUDAPlace(0), fluid.CPUPlace()],
                    concurrency_list=[1, 1, 4],
                    queue_size=2,
                    sync_steps=1,
                    )
            optimizer.minimize(loss)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
            dataset = fluid.DatasetFactory().create_dataset("FileInstantDataset")
            dataset.set_use_var([x,y])
            dataset.set_batch_size(batch_size)
            dataset.set_filelist(filelist)
            exe.train_from_dataset(
                        fluid.default_main_program(),
                        dataset,
                        thread=2,
                        debug=False,
                        fetch_list=[],
                        fetch_info=[],
                        print_period=1)
3616 3617
    """

H
hutuxian 已提交
3618 3619 3620 3621 3622 3623 3624 3625
    def __init__(self,
                 optimizer,
                 cut_list=None,
                 place_list=None,
                 concurrency_list=None,
                 queue_size=30,
                 sync_steps=1,
                 start_cpu_core_id=0):
Z
zhongpu 已提交
3626 3627
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support PipelineOptimizer.")
H
hutuxian 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636
        # TODO: check properties
        self._optimizer = optimizer
        self._cut_list = cut_list
        self._place_list = place_list
        self._concurrency_list = concurrency_list
        self._queue_size = queue_size
        self._sync_steps = sync_steps
        self._start_cpu_core_id = start_cpu_core_id

H
hutuxian 已提交
3637
    def _create_vars(self, block, main_program):
H
hutuxian 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
        used_var_set = set()
        for op_idx in range(block.desc.op_size()):
            op_desc = block.desc.op(op_idx)
            vars = op_desc.input_arg_names() + op_desc.output_arg_names()
            for var in vars:
                if var in used_var_set:
                    continue
                used_var_set.add(var)
                source_var = main_program.block(0).var(str(var))
                block._clone_variable(source_var, False)

H
hutuxian 已提交
3649
    def _extract_section_opt_ops(self, ops, cut_point_name):
H
hutuxian 已提交
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
        """
        Extract opt ops in the given section
        """
        output_names = set(cut_point_name)
        relevant_op_flags = [True] * len(ops)
        for i, op in reversed(list(enumerate(ops))):
            if _some_in_set_(op.desc.output_arg_names(), output_names):
                for name in op.desc.input_arg_names():
                    output_names.add(name)
            else:
                relevant_op_flags[i] = False

        op_path = [ops[i] for i in range(len(ops)) if relevant_op_flags[i]]
        return op_path

H
hutuxian 已提交
3665
    def _find_input_output(self, ops, name, is_forward=True):
H
hutuxian 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
        """
        Find the inputs or outputs of a section
        """
        all_set = set()
        part_set = set()
        for op in ops:
            if is_forward:
                part_set.update(op.desc.output_arg_names())
            else:
                part_set.update(op.desc.input_arg_names())
            all_set.update(op.desc.output_arg_names())
            all_set.update(op.desc.input_arg_names())
        return all_set - part_set

H
hutuxian 已提交
3680
    def _find_persistable_vars(self, ops, whole_parameters):
H
hutuxian 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
        """
        find the persistable input vars in current section
        """
        res = set()
        for op in ops:
            vars = op.desc.input_arg_names()
            for var in vars:
                if var in whole_parameters:
                    res.add(var)
        return res

    def _is_opt_role_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) & int(optimize_role) != 0:
            return True
        return False

    def _is_lr_role_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.LRSched
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

H
hutuxian 已提交
3708
    def _extract_section_ops(self, ops, cut_point_name):
H
hutuxian 已提交
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
        """
        Extract ops in the given section 
        """
        output_names = set(cut_point_name)
        relevant_op_flags = [True] * len(ops)
        for i, op in reversed(list(enumerate(ops))):
            if not self._is_opt_role_op(op) and _some_in_set_(
                    op.desc.output_arg_names(), output_names):
                for name in op.desc.input_arg_names():
                    output_names.add(name)
            elif op.desc.type() == "print" and op.desc.input_arg_names()[
                    0] in output_names:
                continue
            else:
                relevant_op_flags[i] = False

        op_path = [ops[i] for i in range(len(ops)) if relevant_op_flags[i]]
        return op_path

H
hutuxian 已提交
3728 3729
    def _find_section_opt(self, ops, params):
        res = self._extract_section_opt_ops(ops, params)
H
hutuxian 已提交
3730 3731
        return res

H
hutuxian 已提交
3732
    def _split_program(self, main_program, cut_list):
H
hutuxian 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
        programs = []
        block = main_program.block(0)
        whole_parameters = [e.name for e in block.all_parameters()]
        cut_var_names = []
        cut_len = len(cut_list)
        sec_params = []
        for i, cut_vars in enumerate(cut_list[:-1]):
            cut_var_names.append([cut_var.name for cut_var in cut_vars])
        for i, cut_vars in reversed(list(enumerate(cut_list[:-1]))):
            cut_var_names.append(
                [_append_grad_suffix_(cut_var.name) for cut_var in cut_vars])
            if i == 0:
                cut_var_names[-1] += [var.name for var in cut_list[-1]]
        ops = block.ops[:]
        for i, cut_vars in enumerate(cut_var_names):
            program = {
                "program": Program(),
                "input_set": set(),
                "output_set": set()
            }
H
hutuxian 已提交
3753
            cur_ops = self._extract_section_ops(ops, cut_vars)
H
hutuxian 已提交
3754 3755 3756 3757 3758 3759
            if i == 0:
                for op in ops:
                    if self._is_lr_role_op(op):
                        cur_ops.append(op)
            #prevent inplace in/out
            program["input_set"].update(
H
hutuxian 已提交
3760
                self._find_input_output(
H
hutuxian 已提交
3761 3762 3763 3764 3765 3766
                    cur_ops, [], is_forward=True))
            for e in cur_ops:
                ops.remove(e)

            if i < cut_len:
                sec_params.append(
H
hutuxian 已提交
3767
                    self._find_persistable_vars(cur_ops, whole_parameters))
H
hutuxian 已提交
3768
            if i >= cut_len - 1:
H
hutuxian 已提交
3769 3770
                opt_ops = self._find_section_opt(
                    ops, sec_params[2 * cut_len - 2 - i])
H
hutuxian 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780

                for e in opt_ops:
                    ops.remove(e)
                cur_ops += opt_ops

            op_descs = [op.desc for op in cur_ops]
            for op_desc in op_descs:
                ap_op = program["program"].block(0).desc.append_op()
                ap_op.copy_from(op_desc)
            program["input_set"].update(
H
hutuxian 已提交
3781
                self._find_input_output(
H
hutuxian 已提交
3782 3783 3784
                    cur_ops, cut_vars, is_forward=True))
            program["input_set"].update(sec_params[min(i, 2 * cut_len - 2 - i)])
            program["output_set"].update(
H
hutuxian 已提交
3785
                self._find_input_output(
H
hutuxian 已提交
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
                    cur_ops, cut_vars, is_forward=False))
            programs.append(program)
        program = {
            "program": Program(),
            "input_set": set(),
            "output_set": set()
        }
        op_descs = [op.desc for op in ops]
        for op_desc in op_descs:
            ap_op = program["program"].block(0).desc.append_op()
            ap_op.copy_from(op_desc)
        program["input_set"].update(
            [cut_var.name + "@GRAD" for cut_var in cut_list[0]])
        program["input_set"].update(
H
hutuxian 已提交
3800
            self._find_input_output(
H
hutuxian 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
                ops, [], is_forward=True))
        program["input_set"].update(sec_params[0])
        programs.append(program)
        inputs = set()
        for program in reversed(list(programs)):
            output_list = list(program["output_set"])
            for output in output_list:
                if output not in inputs:
                    program["output_set"].remove(output)
            inputs.update(program["input_set"])
        return programs

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        self._optimizer.minimize(loss, startup_program, parameter_list,
                                 no_grad_set)
        program = loss.block.program
H
hutuxian 已提交
3821 3822 3823 3824 3825 3826 3827 3828
        if len(self._cut_list) == 0:
            program_list = []
            ptmp = {"program": program, "input_set": set(), "output_set": set()}
            program_list.append(ptmp)
        else:
            program_list = self._split_program(program, self._cut_list)
            for p in program_list:
                self._create_vars(p["program"].block(0), program)
H
hutuxian 已提交
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
        whole_parameters = [e.name for e in program.block(0).all_parameters()]
        param_need_sync = []
        for i, section_p in enumerate(program_list):
            if not isinstance(self._place_list[i], core.CUDAPlace):
                continue
            section_var = [e for e in section_p["program"].block(0).vars]
            for p in section_var:
                if p in whole_parameters:
                    param_need_sync.append(p)
        program._pipeline_opt = {
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
            "section_program_list": program_list,
            "place_list": self._place_list,
            "concurrency_list": self._concurrency_list,
            "queue_size": self._queue_size,
            "start_cpu_core_id": self._start_cpu_core_id,
            "sync_steps": self._sync_steps,
            "param_need_sync": param_need_sync
        }
M
mapingshuo 已提交
3849 3850


M
mapingshuo 已提交
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
class RecomputeOptimizer(Optimizer):
    """
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
Z
zhongpu 已提交
3913 3914
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
3915 3916
        self._optimizer = optimizer
        self._checkpoints = None
3917 3918
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
M
mapingshuo 已提交
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991

    def _set_checkpoints(self, checkpoints):
        self._checkpoints = checkpoints

    def load(self, stat_dict):
        """
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
            stat_dict: the dict load by load_persistable method

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
                    stat_dict = {}
                    sgd.load(stat_dict)
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
3992
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
3993 3994 3995 3996
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
3997
                    no_grad_set=None)
M
mapingshuo 已提交
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
4013
                 callbacks=None):
M
mapingshuo 已提交
4014 4015 4016 4017 4018 4019 4020
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
4021 4022
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4047
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4048 4049 4050 4051
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4052
                    no_grad_set=None)
M
mapingshuo 已提交
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
                print("Finished backward")
        """

        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
            params_grads = append_backward(
                loss,
                parameter_list,
                no_grad_set,
                checkpoints=self._checkpoints)
4068 4069
            # Note: since we can't use all_reduce_op now,
            #  dgc_op should be the last op of one grad.
4070 4071
            if hasattr(self._optimizer, "_append_dgc_ops"):
                self._optimizer._append_dgc_ops(params_grads)
M
mapingshuo 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
4091
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
4092 4093 4094 4095 4096 4097 4098 4099
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4100
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4101 4102 4103 4104
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4105
                    no_grad_set=None)
M
mapingshuo 已提交
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
        """

        return self._optimizer.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
4120
                 no_grad_set=None):
4121
        assert isinstance(loss, Variable), "The loss should be an Variable."
M
mapingshuo 已提交
4122 4123 4124 4125 4126 4127 4128 4129 4130
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
4131
            no_grad_set=no_grad_set)
M
mapingshuo 已提交
4132 4133 4134 4135 4136 4137 4138

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads


M
mapingshuo 已提交
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
class LookaheadOptimizer(object):
    """
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

	    x = fluid.layers.data(name='x', shape=[2], dtype='float32')
	    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
	    y = fluid.layers.fc(input=[x], size=2, act="softmax")
	    loss = fluid.layers.cross_entropy(input=y, label=label)
	    loss = fluid.layers.mean(x=loss)
	    sgd = fluid.optimizer.SGD(learning_rate=0.01)
	    optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                            alpha=0.5,
                                            k=5)
	    optimizer.minimize(loss)
	    main_program = fluid.default_main_program()
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    feeder = fluid.DataFeeder(feed_list=[x, label], place=place)

	    step = 0
            while(step < 10):
                step += 1
		exe.run(fluid.default_main_program(),
            	feed=feeder.feed(batch_data))

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

Z
zhongpu 已提交
4194 4195
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)

            startup_block.append_op(
                type="assign",
                inputs={"X": fast_var},
                outputs={"Out": slow_var})

        # Add Var k to main prog and startup prog
        k = layers.create_global_var(
            name="lookahead_k",
            shape=[1],
            value=int(self.k),
            dtype='int32',
            persistable=True)

        # Add Var alpha to main prog and startup prog
        alpha = layers.create_global_var(
            name="lookahead_alpha",
            shape=[1],
            value=float(self.alpha),
            dtype='float32',
            persistable=True)

        # Add Var step
        step = layers.create_global_var(
            name="lookahead_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True)
        layers.increment(x=step, value=1.0, in_place=True)

        # lookahead
        zero_var = layers.fill_constant(shape=[1], dtype='float32', value=0.0)

        one_var = layers.fill_constant(shape=[1], dtype='float32', value=1.0)

        mod = layers.elementwise_mod(step, k)
        with layers.control_flow.Switch() as switch:
            with switch.case(mod == zero_var):
                for param_name in params:
                    fast_var = main_block.var(param_name)
                    slow_var = param_to_slow[param_name]
                    tmp_var = layers.elementwise_add(
                        layers.elementwise_mul(fast_var, alpha),
                        layers.elementwise_mul(
                            slow_var, layers.elementwise_sub(one_var, alpha)))
                    layers.assign(input=tmp_var, output=slow_var)
                    layers.assign(input=tmp_var, output=fast_var)
            with switch.default():
                pass
        return mini_out