mobilenetv2.py 6.8 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
L
LielinJiang 已提交
17 18 19

import paddle.nn as nn
import paddle.nn.functional as F
L
LielinJiang 已提交
20

21
from paddle.utils.download import get_weights_path_from_url
L
LielinJiang 已提交
22 23 24 25 26 27

__all__ = ['MobileNetV2', 'mobilenet_v2']

model_urls = {
    'mobilenetv2_1.0':
    ('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams',
L
LielinJiang 已提交
28
     '0340af0a901346c8d46f4529882fb63d')
L
LielinJiang 已提交
29 30 31
}


L
LielinJiang 已提交
32 33 34 35
def _make_divisible(v, divisor, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
L
LielinJiang 已提交
36

L
LielinJiang 已提交
37 38 39
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v
L
LielinJiang 已提交
40 41


L
LielinJiang 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
class ConvBNReLU(nn.Sequential):
    def __init__(self,
                 in_planes,
                 out_planes,
                 kernel_size=3,
                 stride=1,
                 groups=1,
                 norm_layer=nn.BatchNorm2d):
        padding = (kernel_size - 1) // 2

        super(ConvBNReLU, self).__init__(
            nn.Conv2d(
                in_planes,
                out_planes,
                kernel_size,
                stride,
                padding,
                groups=groups,
                bias_attr=False),
            norm_layer(out_planes),
            nn.ReLU6())


class InvertedResidual(nn.Layer):
L
LielinJiang 已提交
66
    def __init__(self,
L
LielinJiang 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                 inp,
                 oup,
                 stride,
                 expand_ratio,
                 norm_layer=nn.BatchNorm2d):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = self.stride == 1 and inp == oup

        layers = []
        if expand_ratio != 1:
            layers.append(
                ConvBNReLU(
                    inp, hidden_dim, kernel_size=1, norm_layer=norm_layer))
        layers.extend([
            ConvBNReLU(
                hidden_dim,
                hidden_dim,
                stride=stride,
                groups=hidden_dim,
                norm_layer=norm_layer),
            nn.Conv2d(
                hidden_dim, oup, 1, 1, 0, bias_attr=False),
            norm_layer(oup),
        ])
        self.conv = nn.Sequential(*layers)

    def forward(self, x):
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Layer):
    def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
        """MobileNetV2 model from
        `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.

        Args:
            scale (float): scale of channels in each layer. Default: 1.0.
            num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer 
                                will not be defined. Default: 1000.
            with_pool (bool): use pool before the last fc layer or not. Default: True.

        Examples:
            .. code-block:: python

                from paddle.vision.models import MobileNetV2

                model = MobileNetV2()
        """
L
LielinJiang 已提交
122 123 124
        super(MobileNetV2, self).__init__()
        self.num_classes = num_classes
        self.with_pool = with_pool
L
LielinJiang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        input_channel = 32
        last_channel = 1280

        block = InvertedResidual
        round_nearest = 8
        norm_layer = nn.BatchNorm2d
        inverted_residual_setting = [
            [1, 16, 1, 1],
            [6, 24, 2, 2],
            [6, 32, 3, 2],
            [6, 64, 4, 2],
            [6, 96, 3, 1],
            [6, 160, 3, 2],
            [6, 320, 1, 1],
        ]
L
LielinJiang 已提交
140

L
LielinJiang 已提交
141 142 143 144 145 146
        input_channel = _make_divisible(input_channel * scale, round_nearest)
        self.last_channel = _make_divisible(last_channel * max(1.0, scale),
                                            round_nearest)
        features = [
            ConvBNReLU(
                3, input_channel, stride=2, norm_layer=norm_layer)
L
LielinJiang 已提交
147 148
        ]

L
LielinJiang 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        for t, c, n, s in inverted_residual_setting:
            output_channel = _make_divisible(c * scale, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(
                    block(
                        input_channel,
                        output_channel,
                        stride,
                        expand_ratio=t,
                        norm_layer=norm_layer))
                input_channel = output_channel

        features.append(
            ConvBNReLU(
                input_channel,
                self.last_channel,
                kernel_size=1,
                norm_layer=norm_layer))

        self.features = nn.Sequential(*features)
L
LielinJiang 已提交
170 171

        if with_pool:
L
LielinJiang 已提交
172 173 174 175 176 177 178 179
            self.pool2d_avg = nn.AdaptiveAvgPool2d(1)

        if self.num_classes > 0:
            self.classifier = nn.Sequential(
                nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes))

    def forward(self, x):
        x = self.features(x)
L
LielinJiang 已提交
180 181

        if self.with_pool:
L
LielinJiang 已提交
182 183
            x = self.pool2d_avg(x)

L
LielinJiang 已提交
184
        if self.num_classes > 0:
L
LielinJiang 已提交
185 186 187
            x = paddle.flatten(x, 1)
            x = self.classifier(x)
        return x
L
LielinJiang 已提交
188 189 190 191 192 193 194 195 196


def _mobilenet(arch, pretrained=False, **kwargs):
    model = MobileNetV2(**kwargs)
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])
197 198

        param = paddle.load(weight_path)
199
        model.load_dict(param)
L
LielinJiang 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213

    return model


def mobilenet_v2(pretrained=False, scale=1.0, **kwargs):
    """MobileNetV2
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        scale: (float): scale of channels in each layer. Default: 1.0.

    Examples:
        .. code-block:: python

214
            from paddle.vision.models import mobilenet_v2
L
LielinJiang 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227

            # build model
            model = mobilenet_v2()

            # build model and load imagenet pretrained weight
            # model = mobilenet_v2(pretrained=True)

            # build mobilenet v2 with scale=0.5
            model = mobilenet_v2(scale=0.5)
    """
    model = _mobilenet(
        'mobilenetv2_' + str(scale), pretrained, scale=scale, **kwargs)
    return model