test_cuda_random_seed.py 5.7 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test cloud role maker."""

from __future__ import print_function
import os
import unittest
import paddle.fluid.generator as generator

import time  # temp for debug
import paddle.fluid as fluid
import numpy as np
import paddle
import paddle.fluid.core as core


class TestGeneratorSeed(unittest.TestCase):
    """
    Test cases for cpu generator seed.
    """

    def test_gen_dropout_dygraph(self):
        gen = paddle.manual_seed(12343)

        fluid.enable_dygraph()

        gen.manual_seed(111111111)
        st = paddle.get_cuda_rng_state()

        x = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        x_again = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        x_third = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        print("x: {}".format(x.numpy()))
        print("x_again: {}".format(x_again.numpy()))
        x = x + x_again + x_third
        y = fluid.layers.dropout(x, 0.5)

        paddle.set_cuda_rng_state(st)

        x1 = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        x1_again = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        x1_third = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        x1 = x1 + x1_again + x1_third
        y1 = fluid.layers.dropout(x1, 0.5)
        y_np = y.numpy()
        y1_np = y1.numpy()

        if core.is_compiled_with_cuda():
            print(">>>>>>> dropout dygraph >>>>>>>")
            self.assertTrue(np.allclose(y_np, y1_np))

    def test_generator_gaussian_random_dygraph(self):
        """Test Generator seed."""
        fluid.enable_dygraph()

        paddle.manual_seed(12312321111)
        x = fluid.layers.gaussian_random([120], dtype="float32")
        st1 = paddle.get_cuda_rng_state()
        x1 = fluid.layers.gaussian_random([120], dtype="float32")
        paddle.set_cuda_rng_state(st1)
        x2 = fluid.layers.gaussian_random([120], dtype="float32")
        paddle.manual_seed(12312321111)
        x3 = fluid.layers.gaussian_random([120], dtype="float32")
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if core.is_compiled_with_cuda():
            print(">>>>>>> gaussian random dygraph >>>>>>>")
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

    def test_generator_randint_dygraph(self):
        """Test Generator seed."""

        fluid.enable_dygraph()

        gen = paddle.manual_seed(12312321111)
        x = paddle.randint(low=10, shape=[10], dtype="int32")
        st1 = gen.get_state()
        x1 = paddle.randint(low=10, shape=[10], dtype="int32")
        gen.set_state(st1)
        x2 = paddle.randint(low=10, shape=[10], dtype="int32")
        paddle.manual_seed(12312321111)
        x3 = paddle.randint(low=10, shape=[10], dtype="int32")
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if core.is_compiled_with_cuda():
            print(">>>>>>> randint dygraph >>>>>>>")
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

    def test_gen_TruncatedNormal_initializer(self):
        fluid.disable_dygraph()

        gen = paddle.manual_seed(123123143)
        cur_state = paddle.get_cuda_rng_state()

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x = fluid.layers.uniform_random(shape=[2, 10])
            result_1 = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.TruncatedNormal(
                    loc=0.0, scale=2.0))
            result_2 = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.TruncatedNormal(
                    loc=0.0, scale=2.0))

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

        paddle.manual_seed(123123143)
        with fluid.program_guard(train_program, startup_program):
            exe.run(startup_program)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

        out1_res1 = np.array(out1[0])
        out1_res2 = np.array(out1[1])
        out2_res1 = np.array(out2[0])
        out2_res2 = np.array(out2[1])

        if core.is_compiled_with_cuda():
            print(">>>>>>> truncated normal static >>>>>>>")
            self.assertTrue(np.allclose(out1_res1, out2_res1))
            self.assertTrue(np.allclose(out1_res2, out2_res2))
            self.assertTrue(not np.allclose(out1_res2, out1_res1))


if __name__ == "__main__":
    unittest.main()