argsort_op.cc 5.5 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/argsort_op.h"
16
#include <memory>
Y
Yibing Liu 已提交
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class ArgsortOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
Yibing Liu 已提交
26 27 28 29 30 31 32 33
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ArgsortOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ArgsortOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Indices"),
                   "Output(Indices) of ArgsortOp should not be null.");

    auto in_dims = ctx->GetInputDim("X");
Y
Yibing Liu 已提交
34
    int axis = ctx->Attrs().Get<int>("axis");
Y
Yibing Liu 已提交
35 36 37

    auto num_dims = in_dims.size();
    PADDLE_ENFORCE(axis < num_dims,
Y
Yibing Liu 已提交
38 39 40 41 42 43
                   "Attr(axis) %d of ArgsortOp is out of bounds for Input(X)'s "
                   "rank %d.",
                   axis, num_dims);
    PADDLE_ENFORCE(axis >= -num_dims,
                   "Attr(axis) %d of ArgsortOp must be not less than "
                   "-rank(Input(X)) (%d).",
Y
Yibing Liu 已提交
44 45
                   axis, num_dims);

46 47
    ctx->ShareDim("X", "Out");
    ctx->ShareDim("X", "Indices");
Y
Yibing Liu 已提交
48 49 50 51 52
    ctx->ShareLoD("X", "Out");
    ctx->ShareLoD("X", "Indices");
  }
};

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
class ArgsortGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*-->*/ framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

Y
Yibing Liu 已提交
71 72 73 74
class ArgsortOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) The input of Argsort op.");
75 76 77
    AddOutput("Out",
              "(Tensor) The sorted tensor of Argsort op, with the same "
              "shape as Input(X).");
Y
Yibing Liu 已提交
78
    AddOutput("Indices",
79 80
              "(Tensor) The indices of a tensor giving the sorted order, with "
              "the same shape as Input(X).");
Y
Yibing Liu 已提交
81 82 83 84 85 86 87 88 89 90
    AddComment(R"DOC(
Argsort operator

Performs sorting on the input tensor along the given axis and outputs two 
tensors, Output(Out) and Output(Indices). They reserve the same shape 
with Input(X), and Output(Out) represents the sorted tensor while 
Output(Indices) gives the sorted order along the given axis Attr(axis).

 )DOC");
    AddAttr<int>("axis",
91 92 93
                 "(int, default -1) The axis along which to sort the tensor. "
                 "When axis < 0, the actual axis will be the |axis|'th "
                 "counting backwards. Default -1, the last dimension.")
Y
Yibing Liu 已提交
94
        .SetDefault(-1);
95 96 97 98 99 100 101
    AddAttr<bool>(
        "descending",
        "(bool, default false) The descending attribute is a flag to tell"
        "algorithm how to sort the input data."
        "If descending is true, will sort by descending order,"
        "else if false, sort by ascending order. Default value is false.")
        .SetDefault(false);
Y
Yibing Liu 已提交
102 103 104
  }
};

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
template <typename T>
class ArgsortGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
    op->SetType("argsort_grad");
    op->SetInput("Indices", this->Output("Indices"));
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ArgsortGradNoNeedBufferVarInference, "X");

Y
Yibing Liu 已提交
125 126 127 128
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
129 130 131 132 133
REGISTER_OPERATOR(argsort, ops::ArgsortOp, ops::ArgsortOpMaker,
                  ops::ArgsortGradOpMaker<paddle::framework::OpDesc>,
                  ops::ArgsortGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(argsort_grad, ops::ArgsortGradOp,
                  ops::ArgsortGradNoNeedBufferVarInference);
Y
Yibing Liu 已提交
134 135
REGISTER_OP_CPU_KERNEL(argsort,
                       ops::ArgsortKernel<paddle::platform::CPUPlace, float>,
136 137 138
                       ops::ArgsortKernel<paddle::platform::CPUPlace, double>,
                       ops::ArgsortKernel<paddle::platform::CPUPlace, int>,
                       ops::ArgsortKernel<paddle::platform::CPUPlace, int64_t>);
139 140 141 142 143
REGISTER_OP_CPU_KERNEL(
    argsort_grad, ops::ArgsortGradientKernel<paddle::platform::CPUPlace, float>,
    ops::ArgsortGradientKernel<paddle::platform::CPUPlace, double>,
    ops::ArgsortGradientKernel<paddle::platform::CPUPlace, int>,
    ops::ArgsortGradientKernel<paddle::platform::CPUPlace, int64_t>);