detection_map_op.cc 9.2 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
wanghaox 已提交
15
#include "paddle/fluid/operators/detection_map_op.h"
16
#include <string>
W
wanghaox 已提交
17 18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class DetectionMAPOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
28 29 30 31 32 33 34 35 36 37
    OP_INOUT_CHECK(ctx->HasInput("DetectRes"), "Input", "DetectRes",
                   "DetectionMAP");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "DetectionMAP");
    OP_INOUT_CHECK(ctx->HasOutput("AccumPosCount"), "Output", "AccumPosCount",
                   "DetectionMAP");
    OP_INOUT_CHECK(ctx->HasOutput("AccumTruePos"), "Output", "AccumTruePos",
                   "DetectionMAP");
    OP_INOUT_CHECK(ctx->HasOutput("AccumFalsePos"), "Output", "AccumFalsePos",
                   "DetectionMAP");
    OP_INOUT_CHECK(ctx->HasOutput("MAP"), "Output", "MAP", "DetectionMAP");
W
wanghaox 已提交
38

W
wanghaox 已提交
39
    auto det_dims = ctx->GetInputDim("DetectRes");
40 41 42 43 44 45 46 47 48 49 50 51
    PADDLE_ENFORCE_EQ(
        det_dims.size(), 2UL,
        platform::errors::InvalidArgument(
            "Input(DetectRes) ndim must be 2, the shape is [N, 6],"
            "but received the ndim is %d",
            det_dims.size()));
    PADDLE_ENFORCE_EQ(
        det_dims[1], 6UL,
        platform::errors::InvalidArgument(
            "The shape is of Input(DetectRes) [N, 6], but received"
            " shape is [N, %d]",
            det_dims[1]));
W
wanghaox 已提交
52
    auto label_dims = ctx->GetInputDim("Label");
53
    PADDLE_ENFORCE_EQ(label_dims.size(), 2,
54 55 56
                      platform::errors::InvalidArgument(
                          "The ndim of Input(Label) must be 2, but received %d",
                          label_dims.size()));
T
tink2123 已提交
57
    if (ctx->IsRuntime() || label_dims[1] > 0) {
58 59 60 61 62 63
      PADDLE_ENFORCE_EQ(
          (label_dims[1] == 6 || label_dims[1] == 5), true,
          platform::errors::InvalidArgument(
              "The shape of Input(Label) is [N, 6] or [N, 5], but received "
              "[N, %d]",
              label_dims[1]));
T
tink2123 已提交
64
    }
W
wanghaox 已提交
65

W
wanghaox 已提交
66
    if (ctx->HasInput("PosCount")) {
67 68 69 70
      PADDLE_ENFORCE(
          ctx->HasInput("TruePos"),
          platform::errors::InvalidArgument(
              "Input(TruePos) of DetectionMAPOp should not be null when "
71
              "Input(PosCount) is not null."));
W
wanghaox 已提交
72 73
      PADDLE_ENFORCE(
          ctx->HasInput("FalsePos"),
74 75
          platform::errors::InvalidArgument(
              "Input(FalsePos) of DetectionMAPOp should not be null when "
76
              "Input(PosCount) is not null."));
W
wanghaox 已提交
77 78 79
    }

    ctx->SetOutputDim("MAP", framework::make_ddim({1}));
W
wanghaox 已提交
80 81 82
  }

 protected:
W
wanghaox 已提交
83
  framework::OpKernelType GetExpectedKernelType(
W
wanghaox 已提交
84 85
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
86
        OperatorWithKernel::IndicateVarDataType(ctx, "DetectRes"),
87
        platform::CPUPlace());
W
wanghaox 已提交
88 89 90 91 92
  }
};

class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
93
  void Make() override {
W
wanghaox 已提交
94 95 96 97 98 99 100 101
    AddInput("DetectRes",
             "(LoDTensor) A 2-D LoDTensor with shape [M, 6] represents the "
             "detections. Each row has 6 values: "
             "[label, confidence, xmin, ymin, xmax, ymax], M is the total "
             "number of detect results in this mini-batch. For each instance, "
             "the offsets in first dimension are called LoD, the number of "
             "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
             "no detected data.");
W
wanghaox 已提交
102
    AddInput("Label",
103
             "(LoDTensor) A 2-D LoDTensor represents the"
W
wanghaox 已提交
104
             "Labeled ground-truth data. Each row has 6 values: "
105 106
             "[label, xmin, ymin, xmax, ymax, is_difficult] or 5 values: "
             "[label, xmin, ymin, xmax, ymax], where N is the total "
W
wanghaox 已提交
107 108 109 110
             "number of ground-truth data in this mini-batch. For each "
             "instance, the offsets in first dimension are called LoD, "
             "the number of offset is N + 1, if LoD[i + 1] - LoD[i] == 0, "
             "means there is no ground-truth data.");
111 112 113 114
    AddInput("HasState",
             "(Tensor<int>) A tensor with shape [1], 0 means ignoring input "
             "states, which including PosCount, TruePos, FalsePos.")
        .AsDispensable();
W
wanghaox 已提交
115 116
    AddInput("PosCount",
             "(Tensor) A tensor with shape [Ncls, 1], store the "
W
wanghaox 已提交
117 118 119 120 121 122 123 124
             "input positive example count of each class, Ncls is the count of "
             "input classification. "
             "This input is used to pass the AccumPosCount generated by the "
             "previous mini-batch when the multi mini-batches cumulative "
             "calculation carried out. "
             "When the input(PosCount) is empty, the cumulative "
             "calculation is not carried out, and only the results of the "
             "current mini-batch are calculated.")
W
wanghaox 已提交
125 126
        .AsDispensable();
    AddInput("TruePos",
W
wanghaox 已提交
127 128 129 130 131
             "(LoDTensor) A 2-D LoDTensor with shape [Ntp, 2], store the "
             "input true positive example of each class."
             "This input is used to pass the AccumTruePos generated by the "
             "previous mini-batch when the multi mini-batches cumulative "
             "calculation carried out. ")
W
wanghaox 已提交
132 133
        .AsDispensable();
    AddInput("FalsePos",
W
wanghaox 已提交
134 135 136 137 138
             "(LoDTensor) A 2-D LoDTensor with shape [Nfp, 2], store the "
             "input false positive example of each class."
             "This input is used to pass the AccumFalsePos generated by the "
             "previous mini-batch when the multi mini-batches cumulative "
             "calculation carried out. ")
W
wanghaox 已提交
139
        .AsDispensable();
W
wanghaox 已提交
140
    AddOutput("AccumPosCount",
W
wanghaox 已提交
141 142 143 144
              "(Tensor) A tensor with shape [Ncls, 1], store the "
              "positive example count of each class. It combines the input "
              "input(PosCount) and the positive example count computed from "
              "input(Detection) and input(Label).");
W
wanghaox 已提交
145 146
    AddOutput("AccumTruePos",
              "(LoDTensor) A LoDTensor with shape [Ntp', 2], store the "
W
wanghaox 已提交
147 148 149
              "true positive example of each class. It combines the "
              "input(TruePos) and the true positive examples computed from "
              "input(Detection) and input(Label).");
W
wanghaox 已提交
150 151
    AddOutput("AccumFalsePos",
              "(LoDTensor) A LoDTensor with shape [Nfp', 2], store the "
W
wanghaox 已提交
152 153 154
              "false positive example of each class. It combines the "
              "input(FalsePos) and the false positive examples computed from "
              "input(Detection) and input(Label).");
W
wanghaox 已提交
155 156 157
    AddOutput("MAP",
              "(Tensor) A tensor with shape [1], store the mAP evaluate "
              "result of the detection.");
158 159 160 161 162
    AddAttr<int>("class_num",
                 "(int) "
                 "The class number.");
    AddAttr<int>(
        "background_label",
翟飞跃 已提交
163
        "(int, default: 0) "
164 165 166
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
        .SetDefault(0);
W
wanghaox 已提交
167 168 169 170 171
    AddAttr<float>(
        "overlap_threshold",
        "(float) "
        "The lower bound jaccard overlap threshold of detection output and "
        "ground-truth data.")
172
        .SetDefault(.5f);
W
wanghaox 已提交
173
    AddAttr<bool>("evaluate_difficult",
W
wanghaox 已提交
174
                  "(bool, default true) "
W
wanghaox 已提交
175 176 177
                  "Switch to control whether the difficult data is evaluated.")
        .SetDefault(true);
    AddAttr<std::string>("ap_type",
W
wanghaox 已提交
178 179 180
                         "(string, default 'integral') "
                         "The AP algorithm type, 'integral' or '11point'.")
        .SetDefault("integral")
W
wanghaox 已提交
181 182
        .InEnum({"integral", "11point"})
        .AddCustomChecker([](const std::string& ap_type) {
183 184 185 186
          PADDLE_ENFORCE_NE(
              GetAPType(ap_type), APType::kNone,
              platform::errors::InvalidArgument(
                  "The ap_type should be 'integral' or '11point."));
W
wanghaox 已提交
187
        });
W
wanghaox 已提交
188
    AddComment(R"DOC(
W
wanghaox 已提交
189 190
Detection mAP evaluate operator.
The general steps are as follows. First, calculate the true positive and
X
Xin Pan 已提交
191 192 193 194 195 196
false positive according to the input of detection and labels, then
calculate the mAP evaluate value.
Supporting '11 point' and 'integral' mAP algorithm. Please get more information
from the following articles:
https://sanchom.wordpress.com/tag/average-precision/
https://arxiv.org/abs/1512.02325
W
wanghaox 已提交
197 198 199 200 201 202 203 204 205

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
206 207 208 209
REGISTER_OPERATOR(
    detection_map, ops::DetectionMAPOp, ops::DetectionMAPOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
W
wanghaox 已提交
210
REGISTER_OP_CPU_KERNEL(
W
wanghaox 已提交
211 212
    detection_map, ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, float>,
    ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, double>);