reduce_grad_kernel.cc 6.6 KB
Newer Older
C
chentianyu03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/kernels/reduce_grad_kernel.h"
C
chentianyu03 已提交
16 17 18 19 20

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
21 22 23 24 25
#include "paddle/phi/kernels/funcs/reduce_functor.h"
#include "paddle/phi/kernels/impl/reduce_grad.h"
#include "paddle/phi/kernels/impl/reduce_max_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/reduce_min_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/reduce_prod_grad_kernel_impl.h"
C
chentianyu03 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
namespace phi {

template <typename T, typename Context>
void ComputeFromInput(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& input2,
                      const std::vector<int64_t>& dims,
                      DenseTensor* x_grad) {
  auto* input0 = &x;
  auto* output = x_grad;
  dev_ctx.template Alloc<T>(output);

  const auto* input2_d = input2.data<T>();
  auto* output_d = output->data<T>();

  // handle reduce_all
  if (input2.dims().size() == 1 && input2.dims()[0] == 1) {
    for (int64_t i = 0; i < phi::product(input0->dims()); ++i) {
      output_d[i] = input2_d[0];
    }
    return;
  }

  // handle reduce by one dimension
  int reduce_dim_index = dims[0];
  if (reduce_dim_index < 0) {
    reduce_dim_index += input0->dims().size();
  }

  auto& input_dim = input0->dims();
  int64_t before_dim = 1;
  for (int i = 0; i < reduce_dim_index; ++i) {
    before_dim *= input_dim[i];
  }
  int64_t reduce_dim = input_dim[reduce_dim_index];
  int64_t after_dim = 1;
  for (int i = reduce_dim_index + 1; i < input_dim.size(); ++i) {
    after_dim *= input_dim[i];
  }
  for (int64_t i = 0; i < before_dim; ++i) {
    for (int64_t j = 0; j < reduce_dim; ++j) {
      for (int64_t k = 0; k < after_dim; ++k) {
        output_d[i * reduce_dim * after_dim + j * after_dim + k] =
            input2_d[i * after_dim + k];
      }
    }
  }
}

template <typename T, typename Context>
void ReduceSumGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& out_grad,
                         const std::vector<int64_t>& dims,
                         bool keep_dim,
                         bool reduce_all,
                         DataType in_dtype,
                         DataType out_dtype,
                         DenseTensor* x_grad) {
  if (dims.size() == 1) {
    if (out_dtype != DataType::UNDEFINED) {
      DenseTensorMeta x_grad_meta(out_dtype, x_grad->dims(), x_grad->layout());
      DenseTensor x_grad_tmp =
          phi::Empty<Context>(dev_ctx, std::move(x_grad_meta));

      ComputeFromInput<T, Context>(dev_ctx, x, out_grad, dims, &x_grad_tmp);

      phi::CastKernel<T>(dev_ctx, x_grad_tmp, in_dtype, x_grad);

    } else {
      ComputeFromInput<T, Context>(dev_ctx, x, out_grad, dims, x_grad);
    }
  }

100 101 102
  ReduceGradKernel<Context, T, funcs::SumGradFunctor, true>(dev_ctx,
                                                            x,
                                                            paddle::none,
103
                                                            out_grad,
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
                                                            dims,
                                                            keep_dim,
                                                            reduce_all,
                                                            in_dtype,
                                                            out_dtype,
                                                            x_grad);
}

template <typename T, typename Context>
void ReduceMeanGradKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& out_grad,
                          const std::vector<int64_t>& dims,
                          bool keep_dim,
                          bool reduce_all,
                          DataType in_dtype,
                          DataType out_dtype,
                          DenseTensor* x_grad) {
  ReduceGradKernel<Context, T, funcs::MeanGradFunctor, true>(dev_ctx,
                                                             x,
                                                             paddle::none,
125
                                                             out_grad,
126 127 128 129 130 131
                                                             dims,
                                                             keep_dim,
                                                             reduce_all,
                                                             in_dtype,
                                                             out_dtype,
                                                             x_grad);
C
chentianyu03 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
}

}  // namespace phi

PD_REGISTER_KERNEL(sum_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ReduceSumGradKernel,
                   bool,
                   float,
                   double,
                   phi::dtype::float16,
                   int,
                   int64_t,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

PD_REGISTER_KERNEL(mean_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ReduceMeanGradKernel,
                   bool,
                   float,
                   double) {}

PD_REGISTER_KERNEL(prod_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ReduceProdGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}

PD_REGISTER_KERNEL(max_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ReduceMaxGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}

PD_REGISTER_KERNEL(min_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ReduceMinGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}