layer_norm_op_mlu.cc 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DDim = framework::DDim;

template <typename T>
class LayerNormMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
    const auto epsilon = ctx.Attr<float>("epsilon");
    const auto* x = ctx.Input<Tensor>("X");
    const auto* scale = ctx.Input<Tensor>("Scale");
    const auto* bias = ctx.Input<Tensor>("Bias");
    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* variance = ctx.Output<Tensor>("Variance");

    auto place = ctx.GetPlace();

    y->mutable_data<T>(place);
    mean->mutable_data<T>(place);
    variance->mutable_data<T>(place);

    const auto& x_dims = x->dims();
    std::vector<int> scale_bias_axes;
    std::vector<int> mean_var_axes;
    for (auto i = 0; i < x_dims.size(); ++i) {
      if (i >= begin_norm_axis) {
        scale_bias_axes.push_back(x_dims[i]);
      } else {
        mean_var_axes.push_back(x_dims[i]);
      }
    }

    MLUCnnlTensorDesc x_desc(*x);
    MLUCnnlTensorDesc y_desc(*y);
    MLUCnnlTensorDesc mean_var_desc(mean_var_axes.size(), mean_var_axes.data(),
                                    ToCnnlDataType<T>());
    // cnnl only support both of scale and bias is NULL or not.
    if (!scale && !bias) {
      MLUCnnl::LayerNormForward(
          ctx, begin_norm_axis, x_desc.get(), GetBasePtr(x),
          nullptr /*scale_bias_desc*/, nullptr /*scale*/, nullptr /*bias*/,
          epsilon, y_desc.get(), GetBasePtr(y), mean_var_desc.get(),
          GetBasePtr(mean), GetBasePtr(variance));
    } else {
      Tensor tmp_scale(x->dtype());
      if (!scale) {
        tmp_scale.mutable_data<T>(phi::make_ddim(scale_bias_axes), place);
        FillMLUTensorWithHostValue(ctx, static_cast<T>(1), &tmp_scale);
      } else {
        tmp_scale = *scale;
      }

      Tensor tmp_bias(x->dtype());
      if (!bias) {
        tmp_bias.mutable_data<T>(phi::make_ddim(scale_bias_axes), place);
        FillMLUTensorWithHostValue(ctx, static_cast<T>(0), &tmp_bias);
      } else {
        tmp_bias = *bias;
      }

      // scale and bias should have same type with x/y
      MLUCnnlTensorDesc float32_desc(scale_bias_axes.size(),
                                     scale_bias_axes.data(), CNNL_DTYPE_FLOAT);
      MLUCnnlTensorDesc float16_desc(scale_bias_axes.size(),
                                     scale_bias_axes.data(), CNNL_DTYPE_HALF);
      cnnlCastDataType_t cast_type = GetCastDataType(VT::FP32, VT::FP16);

      Tensor final_scale(x->dtype());
      if (final_scale.dtype() == DataType::FLOAT16 &&
          tmp_scale.dtype() == DataType::FLOAT32) {
        final_scale.mutable_data<T>(phi::make_ddim(scale_bias_axes), place);
        // cast scale to fp16
        MLUCnnl::Cast(ctx, cast_type, float32_desc.get(),
                      GetBasePtr(&tmp_scale), float16_desc.get(),
                      GetBasePtr(&final_scale));
      } else {
        final_scale = tmp_scale;
      }

      Tensor final_bias(x->dtype());
      if (final_bias.dtype() == DataType::FLOAT16 &&
          tmp_bias.dtype() == DataType::FLOAT32) {
        final_bias.mutable_data<T>(phi::make_ddim(scale_bias_axes), place);
        // cast bias to fp16
        MLUCnnl::Cast(ctx, cast_type, float32_desc.get(), GetBasePtr(&tmp_bias),
                      float16_desc.get(), GetBasePtr(&final_bias));
      } else {
        final_bias = tmp_bias;
      }

      MLUCnnlTensorDesc scale_bias_desc(
          scale_bias_axes.size(), scale_bias_axes.data(), ToCnnlDataType<T>());
      MLUCnnl::LayerNormForward(
          ctx, begin_norm_axis, x_desc.get(), GetBasePtr(x),
          scale_bias_desc.get(), GetBasePtr(&final_scale),
          GetBasePtr(&final_bias), epsilon, y_desc.get(), GetBasePtr(y),
          mean_var_desc.get(), GetBasePtr(mean), GetBasePtr(variance));
    }
  }
};

template <typename T>
class LayerNormGradMLUKernel : public framework::OpKernel<T> {
126 127
  using MPDType = typename details::MPTypeTrait<T>::Type;

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
    const auto* x = ctx.Input<Tensor>("X");
    const auto* mean = ctx.Input<Tensor>("Mean");
    const auto* variance = ctx.Input<Tensor>("Variance");
    const auto* scale = ctx.Input<Tensor>("Scale");
    const auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dscale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* dbias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto place = ctx.GetPlace();
    dx->mutable_data<T>(place);

    const auto& x_dims = x->dims();
    std::vector<int> scale_bias_axes;
    std::vector<int> mean_var_axes;
    for (auto i = 0; i < x_dims.size(); ++i) {
      if (i >= begin_norm_axis) {
        scale_bias_axes.push_back(x_dims[i]);
      } else {
        mean_var_axes.push_back(x_dims[i]);
      }
    }

    MLUCnnlTensorDesc x_desc(*x);
    MLUCnnlTensorDesc dy_desc(*dy);
    MLUCnnlTensorDesc mean_var_desc(mean_var_axes.size(), mean_var_axes.data(),
                                    ToCnnlDataType<T>());
    MLUCnnlTensorDesc dx_desc(*dx);

    Tensor tmp_scale(x->dtype());
    if (!scale) {
      tmp_scale.mutable_data<T>(phi::make_ddim(scale_bias_axes), place);
      FillMLUTensorWithHostValue(ctx, static_cast<T>(1), &tmp_scale);
    } else {
      tmp_scale = *scale;
    }

    MLUCnnlTensorDesc float32_desc(scale_bias_axes.size(),
                                   scale_bias_axes.data(), CNNL_DTYPE_FLOAT);
    MLUCnnlTensorDesc float16_desc(scale_bias_axes.size(),
                                   scale_bias_axes.data(), CNNL_DTYPE_HALF);
    cnnlCastDataType_t cast_fp32_to_fp16 = GetCastDataType(VT::FP32, VT::FP16);
    cnnlCastDataType_t cast_fp16_to_fp32 = GetCastDataType(VT::FP16, VT::FP32);

    Tensor final_scale(x->dtype());
    if (final_scale.dtype() == DataType::FLOAT16 &&
        tmp_scale.dtype() == DataType::FLOAT32) {
      final_scale.mutable_data<T>(phi::make_ddim(scale_bias_axes), place);
      // cast scale to fp16
      MLUCnnl::Cast(ctx, cast_fp32_to_fp16, float32_desc.get(),
                    GetBasePtr(&tmp_scale), float16_desc.get(),
                    GetBasePtr(&final_scale));
    } else {
      final_scale = tmp_scale;
    }

    Tensor tmp_dscale(x->dtype());
    if (dscale && (tmp_dscale.dtype() == dscale->dtype())) {
      dscale->mutable_data<T>(place);
      tmp_dscale = *dscale;
    } else {
      tmp_dscale.mutable_data<T>(phi::make_ddim(scale_bias_axes), place);
    }
    Tensor tmp_dbias(x->dtype());
    if (dbias && (tmp_dbias.dtype() == dbias->dtype())) {
      dbias->mutable_data<T>(place);
      tmp_dbias = *dbias;
    } else {
      tmp_dbias.mutable_data<T>(phi::make_ddim(scale_bias_axes), place);
    }

    MLUCnnlTensorDesc scale_desc(scale_bias_axes.size(), scale_bias_axes.data(),
                                 ToCnnlDataType<T>());
    MLUCnnl::LayerNormBackward(
        ctx, begin_norm_axis, x_desc.get(), GetBasePtr(x), dy_desc.get(),
        GetBasePtr(dy), scale_desc.get(), GetBasePtr(&final_scale),
        mean_var_desc.get(), GetBasePtr(mean), GetBasePtr(variance),
        dx_desc.get(), GetBasePtr(dx), GetBasePtr(&tmp_dscale),
        GetBasePtr(&tmp_dbias));

    if (dscale && (tmp_dscale.dtype() == DataType::FLOAT16 &&
                   dscale->dtype() == DataType::FLOAT32)) {
213
      dscale->mutable_data<MPDType>(place);
214 215 216 217 218 219
      MLUCnnl::Cast(ctx, cast_fp16_to_fp32, float16_desc.get(),
                    GetBasePtr(&tmp_dscale), float32_desc.get(),
                    GetBasePtr(dscale));
    }
    if (dbias && (tmp_dbias.dtype() == DataType::FLOAT16 &&
                  dbias->dtype() == DataType::FLOAT32)) {
220
      dbias->mutable_data<MPDType>(place);
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
      MLUCnnl::Cast(ctx, cast_fp16_to_fp32, float16_desc.get(),
                    GetBasePtr(&tmp_dbias), float32_desc.get(),
                    GetBasePtr(dbias));
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_MLU_KERNEL(layer_norm, ops::LayerNormMLUKernel<float>,
                       ops::LayerNormMLUKernel<plat::float16>);
REGISTER_OP_MLU_KERNEL(layer_norm_grad, ops::LayerNormGradMLUKernel<float>,
                       ops::LayerNormGradMLUKernel<plat::float16>);