search_compute.h 4.1 KB
Newer Older
A
Aurelius84 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <immintrin.h>
#include <cfloat>
#include <cmath>
#include <cstring>

#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

template <typename DeviceContext, typename T>
void call_gemm(const math::BlasT<DeviceContext, T>& blas,
               const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB,
               const int M, const int N, const int K, const T alpha, const T* A,
               const T* B, const T beta, T* C) {
  int lda = (TransA == CblasNoTrans) ? K : M;
  int ldb = (TransB == CblasNoTrans) ? N : K;
  blas.GEMM(TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, N);
}

template <typename T>
void call_gemm(const framework::ExecutionContext& ctx,
               const CBLAS_TRANSPOSE TransA, const CBLAS_TRANSPOSE TransB,
               const int M, const int N, const int K, const T alpha, const T* A,
               const T* B, const T beta, T* C) {
  int lda = (TransA == CblasNoTrans) ? K : M;
  int ldb = (TransB == CblasNoTrans) ? N : K;
  auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
  blas.GEMM(TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, N);
}

template <typename DeviceContext, typename T>
void call_gemm_with_lda(const math::BlasT<DeviceContext, T>& blas,
                        const CBLAS_TRANSPOSE TransA,
                        const CBLAS_TRANSPOSE TransB, const int M, const int N,
                        const int K, const T alpha, const T* A, const T* B,
                        const T beta, T* C, int lda) {
  int ldb = (TransB == CblasNoTrans) ? N : K;

  blas.GEMM(TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, N);
}

template <typename T>
void call_gemm_batched(const framework::ExecutionContext& ctx,
                       const CBLAS_TRANSPOSE TransA,
                       const CBLAS_TRANSPOSE TransB, const int M, const int N,
                       const int K, const T alpha, const T** A, const T** B,
                       const T beta, T** C, const int batch) {
  for (int i = 0; i < batch; ++i) {
    call_gemm(ctx, TransA, TransB, M, N, K, alpha, A[i], B[i], beta, C[i]);
  }
}

#define __m256x __m256

static const unsigned int AVX_STEP_SIZE = 8;
static const unsigned int AVX_CUT_LEN_MASK = 7U;

#define _mm256_mul_px _mm256_mul_ps
#define _mm256_add_px _mm256_add_ps
#define _mm256_load_px _mm256_loadu_ps
#define _mm256_store_px _mm256_storeu_ps
#define _mm256_broadcast_sx _mm256_broadcast_ss

template <typename T>
87
inline void avx_axpy(const T* x, T* y, size_t len, const T alpha) {
A
Aurelius84 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  unsigned int jjj, lll;
  jjj = lll = 0;

  lll = len & ~AVX_CUT_LEN_MASK;
  __m256x mm_alpha = _mm256_broadcast_sx(&alpha);
  for (jjj = 0; jjj < lll; jjj += AVX_STEP_SIZE) {
    _mm256_store_px(
        y + jjj,
        _mm256_add_px(_mm256_load_px(y + jjj),
                      _mm256_mul_px(mm_alpha, _mm256_load_px(x + jjj))));
  }

  for (; jjj < len; jjj++) {
    y[jjj] += alpha * x[jjj];
  }
}

A
Aurelius84 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
template <typename T>
inline void avx_axpy_noadd(const T* x, T* y, size_t len, const T alpha) {
  unsigned int jjj, lll;
  jjj = lll = 0;

  lll = len & ~AVX_CUT_LEN_MASK;
  __m256x mm_alpha = _mm256_broadcast_sx(&alpha);
  for (jjj = 0; jjj < lll; jjj += AVX_STEP_SIZE) {
    _mm256_store_px(y + jjj, _mm256_mul_px(mm_alpha, _mm256_load_px(x + jjj)));
  }

  for (; jjj < len; jjj++) {
    y[jjj] = alpha * x[jjj];
  }
}

A
Aurelius84 已提交
121 122
}  // namespace operators
}  // namespace paddle