launch_utils.py 67.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import time
import os
import signal
import copy
import sys
import subprocess
22 23
import tempfile
import shutil
24
from contextlib import closing
X
xiongkun 已提交
25
import multiprocessing
26
import socket
27
import warnings
28
import six
W
WangXi 已提交
29
import struct
30
import json
31

32 33
import paddle
import paddle.fluid as fluid
J
Jiangxinz 已提交
34
from distutils.util import strtobool
X
xiongkun 已提交
35
import paddle.utils.cpp_extension.extension_utils as utils
36 37 38 39
logger = logging.getLogger("root")
logger.propagate = False


G
gongweibao 已提交
40
class DistributeMode():
41 42 43 44 45 46 47 48
    """
    There are various mode for fleetrun, each of them is designed for different model.
    """
    COLLECTIVE = 0
    PS = 1
    PS_HETER = 2


G
gongweibao 已提交
49
class DeviceMode():
50 51 52
    """
    Training devices type
    """
53
    UNKNOWN = -1
54 55 56
    CPU = 0
    GPU = 1
    KUNLUN = 2
57
    XPU = 2
58 59
    ASCEND_NPU = 3
    UNKNOWN = 3
60 61


62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
class Cluster(object):
    def __init__(self, hdfs):
        self.job_server = None
        self.pods = []
        self.hdfs = None
        self.job_stage_flag = None

    def __str__(self):
        return "job_server:{} pods:{} job_stage_flag:{} hdfs:{}".format(
            self.job_server, [str(pod) for pod in self.pods],
            self.job_stage_flag, self.hdfs)

    def __eq__(self, cluster):
        if len(self.pods) != len(cluster.pods):
            return False

        for a, b in zip(self.pods, cluster.pods):
            if a != b:
                return False

        if self.job_stage_flag != cluster.job_stage_flag:
            return False

        return True

    def __ne__(self, cluster):
        return not self.__eq__(cluster)

Z
zhangchunle 已提交
90
    def update_pods(self, cluster):
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        self.pods = copy.copy(cluster.pods)

    def trainers_nranks(self):
        return len(self.trainers_endpoints())

    def pods_nranks(self):
        return len(self.pods)

    def trainers_endpoints(self):
        r = []
        for pod in self.pods:
            for t in pod.trainers:
                r.append(t.endpoint)
        return r

106 107 108 109 110 111 112 113
    def world_device_ids(self):
        r = []
        for pod in self.pods:
            for t in pod.trainers:
                str_accelerators = [str(acc) for acc in t.accelerators]
                r.append(str_accelerators)
        return r

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    def pods_endpoints(self):
        r = []
        for pod in self.pods:
            ep = "{}:{}".format(pod.addr, pod.port)
            assert pod.port != None and pod.addr != None, "{} not a valid endpoint".format(
                ep)
            r.append(ep)
        return r

    def get_pod_by_id(self, pod_id):
        for pod in self.pods:
            if str(pod_id) == str(pod.id):
                return pod

        return None


class JobServer(object):
    def __init__(self):
        self.endpoint = None

    def __str__(self):
        return "{}".format(self.endpoint)

    def __eq__(self, j):
        return self.endpint == j.endpoint

    def __ne__(self, j):
        return not self == j


class Trainer(object):
    def __init__(self):
147
        self.accelerators = []
148 149
        self.endpoint = None
        self.rank = None
150
        self.stage = None
151 152

    def __str__(self):
153 154
        return "accelerator:{} endpoint:{} rank:{}".format(
            self.accelerators, self.endpoint, self.rank)
155 156

    def __eq__(self, t):
157
        if len(self.accelerators) != len(t.accelerators):
158 159 160 161 162 163
            return False

        if self.endpoint != t.endpoint or \
                self.rank != t.rank:
            return False

164
        for a, b in zip(self.accelerators, t.accelerators):
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
            if a != b:
                return False

        return True

    def __ne__(self, t):
        return not self == t

    def rank(self):
        return self.rank


class Pod(object):
    def __init__(self):
        self.rank = None
        self.id = None
        self.addr = None
        self.port = None
        self.trainers = []
184 185
        self.servers = []
        self.workers = []
186
        self.heter_workers = []
187 188
        self.accelerators = []
        self.device_mode = None
189 190

    def __str__(self):
191
        return "rank:{} id:{} addr:{} port:{} visible_accelerator:{} trainers:{} servers:{} \
192
            workers:{} heter_workers:{}".format(
193
            self.rank, self.id, self.addr, self.port, self.accelerators, [
194 195 196
                str(t) for t in self.trainers
            ], [str(s) for s in self.servers], [str(w) for w in self.workers],
            [str(h) for h in self.heter_workers])
197 198 199 200 201 202

    def __eq__(self, pod):
        if self.rank != pod.rank or \
                self.id != pod.id or \
                self.addr != pod.addr or \
                self.port != pod.port:
Z
zhangchunle 已提交
203
            logger.debug("pod {} != {}".format(self, pod))
204 205 206 207 208 209 210 211 212 213 214 215 216
            return False

        if len(self.trainers) != len(pod.trainers):
            logger.debug("trainers {} != {}".format(self.trainers,
                                                    pod.trainers))
            return False

        for i in range(len(self.trainers)):
            if self.trainers[i] != pod.trainers[i]:
                logger.debug("trainer {} != {}".format(self.trainers[i],
                                                       pod.trainers[i]))
                return False

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        if len(self.servers) != len(pod.servers):
            logger.debug("servers {} != {}".format(self.servers, pod.servers))
            return False

        for i in range(len(self.servers)):
            if self.servers[i] != pod.servers[i]:
                logger.debug("servers {} != {}".format(self.servers[i],
                                                       pod.servers[i]))
                return False

        if len(self.workers) != len(pod.workers):
            logger.debug("workers {} != {}".format(self.workers, pod.workers))
            return False

        for i in range(len(self.workers)):
            if self.workers[i] != pod.workers[i]:
                logger.debug("workers {} != {}".format(self.workers[i],
                                                       pod.workers[i]))
                return False

237 238 239 240 241 242 243 244 245 246 247
        return True

    def __ne__(self, pod):
        return not self == pod

    def parse_response(self, res_pods):
        pass

    def rank(self):
        return self.rank

248
    def get_visible_accelerators(self):
249
        r = ""
250
        for g in self.accelerators:
251 252
            r += "{},".format(g)

253
        assert r != "", "this pod {} can't see any accelerators".format(self)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

        r = r[:-1]
        return r


def get_logger(log_level=20, name="root"):
    logger = logging.getLogger(name)
    logger.setLevel(log_level)

    log_handler = logging.StreamHandler()
    log_format = logging.Formatter(
        '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
    log_handler.setFormatter(log_format)
    logger.addHandler(log_handler)

    return logger


272 273
def get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                devices_per_proc):
274
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
275 276 277 278 279 280
    cluster = Cluster(hdfs=None)
    trainer_rank = 0
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
281 282
        pod.device_mode = device_mode

283
        cur_node_endpoints = trainer_endpoints[node_rank]
284
        # when use paddlecloud, endpoints may > devices_per_proc(user_defined)
285
        assert len(cur_node_endpoints) >= len(
286
            devices_per_proc
287
        ), "current trainer_endpoints size should be greater equal than acclerators size."
288
        for i in range(len(devices_per_proc)):
289
            trainer = Trainer()
290
            if device_mode == DeviceMode.GPU or device_mode == DeviceMode.ASCEND_NPU:
291
                if isinstance(devices_per_proc[i], (list, tuple)):
292 293
                    trainer.accelerators.extend(devices_per_proc[i])
                    pod.accelerators.extend(devices_per_proc[i])
294
                else:
295 296
                    trainer.accelerators.append(devices_per_proc[i])
                    pod.accelerators.append(devices_per_proc[i])
297 298
            elif device_mode == DeviceMode.XPU:
                if isinstance(devices_per_proc[i], (list, tuple)):
299
                    trainer.accelerators.extend(devices_per_proc[i])
300
                else:
301
                    trainer.accelerators.append(devices_per_proc[i])
302
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
303 304 305 306 307 308 309 310 311 312 313
            trainer.rank = trainer_rank
            trainer_rank += 1

            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


def terminate_local_procs(procs):
K
kuizhiqing 已提交
314 315 316 317 318 319 320 321 322 323 324
    # try to terminate process by group, this happend in multiprocess senario in user process
    if os.name != 'nt':
        for p in procs:
            if p.proc.poll() is None:
                os.killpg(os.getpgid(p.proc.pid), signal.SIGTERM)
                if p.log_fn:
                    p.log_fn.close()
                logger.info("terminate process group gid:{}".format(p.proc.pid))

        time.sleep(1)

325 326 327
    for p in procs:
        if p.proc.poll() is None:
            p.proc.terminate()
328 329
            if p.log_fn:
                p.log_fn.close()
330 331
            logger.debug("terminate process id:{}".format(p.proc.pid))

332
    # wait all process terminiated
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    time.sleep(3)
    for step in range(0, 50):
        alive = False
        for p in procs:
            if p.proc.poll() is None:  # not termniate
                os.kill(p.proc.pid, signal.SIGKILL)
                alive = True

        if not alive:
            logger.info("terminate all the procs")
            return

        time.sleep(3)

    logger.fatal("can't kill all process and exit")
    exit(1)


def get_host_name_ip():
    try:
        host_name = socket.gethostname()
        host_ip = socket.gethostbyname(host_name)
        return host_name, host_ip
    except:
        return None


def add_arguments(argname, type, default, help, argparser, **kwargs):
    """Add argparse's argument.
    Usage:
    .. code-block:: python
        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
J
Jiangxinz 已提交
368
    type = strtobool if type == bool else type
369 370 371 372 373 374 375 376 377 378 379
    argparser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs)


def find_free_ports(num):
    def __free_port():
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
W
WangXi 已提交
380 381 382 383
            # Note(wangxi): Close the connection with a TCP RST instead
            # of a TCP FIN, to avoid time_wait state.
            s.setsockopt(socket.SOL_SOCKET, socket.SO_LINGER,
                         struct.pack('ii', 1, 0))
384 385 386 387 388 389 390 391 392 393 394 395 396 397
            s.bind(('', 0))
            return s.getsockname()[1]

    port_set = set()
    step = 0
    while True:
        port = __free_port()
        if port not in port_set:
            port_set.add(port)

        if len(port_set) >= num:
            return port_set

        step += 1
W
WangXi 已提交
398
        if step > 400:
399 400 401 402 403 404 405 406
            print(
                "can't find avilable port and use the specified static port now!"
            )
            return None

    return None


407 408 409 410 411 412
def get_ports(num, offset):
    if os.environ.get('FLAGS_START_PORT') is None:
        ports = find_free_ports(num)
        if ports is not None:
            ports = list(ports)
    else:
413
        start_port = int(os.environ.get('FLAGS_START_PORT'))
414 415 416 417
        ports = range(start_port + offset, start_port + offset + num, 1)
    return ports


418 419 420 421 422 423 424 425
def pretty_print_envs(envs, header=None):
    spacing = 2
    max_k = 40
    max_v = 45

    for k, v in envs.items():
        max_k = max(max_k, len(k))

426 427 428
    h_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(max_k, " " * spacing,
                                                          max_v)
    l_format = "    " + "|{{:>{}s}}{{}}{{:^{}s}}|\n".format(max_k, max_v)
429 430
    length = max_k + max_v + spacing

431 432
    border = "    +" + "".join(["="] * length) + "+"
    line = "    +" + "".join(["-"] * length) + "+"
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

    draws = ""
    draws += border + "\n"

    if header:
        draws += h_format.format(header[0], header[1])
    else:
        draws += h_format.format("fleetrun Distributed Envs", "Value")

    draws += line + "\n"

    for k, v in envs.items():
        if isinstance(v, str) and len(v) >= max_v:
            str_v = "... " + v[-41:]
        else:
            str_v = v

        draws += l_format.format(k, " " * spacing, str(str_v))

    draws += border

    _str = "\n{}\n".format(draws)
    return _str


458 459 460 461 462 463 464 465 466 467
class TrainerProc(object):
    def __init__(self):
        self.proc = None
        self.log_fn = None
        self.log_offset = None
        self.rank = None
        self.local_rank = None
        self.cmd = None


468 469 470 471 472 473 474 475 476 477 478 479
_run_with_coverage = False


def run_with_coverage(*args):
    global _run_with_coverage
    assert len(args) <= 1, "len(args) {} should <= 1".format(len(args))
    if len(args) == 1:
        assert isinstance(args[0], bool)
        _run_with_coverage = args[0]
    return _run_with_coverage


480 481 482 483
def start_local_trainers(cluster,
                         pod,
                         training_script,
                         training_script_args,
484 485 486 487 488 489 490 491
                         log_dir=None,
                         envs=None):

    if envs is None:
        current_env = copy.copy(os.environ.copy())
    else:
        current_env = copy.copy(envs)

492 493 494 495
    # paddle broadcast ncclUniqueId use socket, and
    # proxy maybe make trainers unreachable, so delete them.
    # if we set them to "", grpc will log error message "bad uri"
    # so just delete them.
496 497 498
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

499 500
    ids = cluster.world_device_ids()
    res = [':'.join(ele) for ele in ids]
501 502 503 504 505 506
    procs = []
    for idx, t in enumerate(pod.trainers):
        proc_env = {
            "PADDLE_TRAINER_ID": "%d" % t.rank,
            "PADDLE_CURRENT_ENDPOINT": "%s" % t.endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
507 508 509 510 511
            "PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints()),
            "PADDLE_RANK_IN_NODE": str(idx),
            "PADDLE_LOCAL_DEVICE_IDS":
            ",".join([str(acc) for acc in t.accelerators]),
            "PADDLE_WORLD_DEVICE_IDS": ",".join(res),
512 513
        }

514 515 516 517 518 519 520 521 522 523 524
        # The following three environnement variables are used for auto mapping
        if current_env.get("PADDLE_CLUSTER_TOPO_PATH", None) is not None:
            proc_env["PADDLE_CLUSTER_TOPO_PATH"] = current_env[
                "PADDLE_CLUSTER_TOPO_PATH"]
        if current_env.get("PADDLE_RANK_MAPPING_PATH", None) is not None:
            proc_env["PADDLE_RANK_MAPPING_PATH"] = current_env[
                "PADDLE_RANK_MAPPING_PATH"]
        if current_env.get("PADDLE_ENABLE_AUTO_MAPPING", None) is not None:
            proc_env["PADDLE_ENABLE_AUTO_MAPPING"] = current_env[
                "PADDLE_ENABLE_AUTO_MAPPING"]

525
        if len(t.accelerators) > 0 and pod.device_mode == DeviceMode.GPU:
526
            proc_env["FLAGS_selected_gpus"] = "%s" % ",".join(
527 528
                [str(g) for g in t.accelerators])

529 530 531 532 533
        elif len(t.
                 accelerators) > 0 and pod.device_mode == DeviceMode.ASCEND_NPU:
            proc_env["FLAGS_selected_npus"] = "%s" % ",".join(
                [str(g) for g in t.accelerators])

534 535 536 537 538
        if len(t.accelerators) > 0:
            proc_env["FLAGS_selected_accelerators"] = "%s" % ",".join(
                [str(g) for g in t.accelerators])
        # to do: same code style in future
        if fluid.core.is_compiled_with_xpu() and len(t.accelerators) > 0:
539
            proc_env["FLAGS_selected_xpus"] = "%s" % ",".join(
540
                [str(g) for g in t.accelerators])
541

542 543
        current_env.update(proc_env)

544
        coverage_args = []
545 546
        if run_with_coverage() or os.environ.get("WITH_COVERAGE",
                                                 "OFF") == "ON":
547 548 549
            coverage_args = ["-m", "coverage", "run", "--branch", "-p"]
        cmd = [sys.executable, "-u"] + coverage_args + [training_script
                                                        ] + training_script_args
550

551 552 553 554 555 556 557 558
        logger.debug("start trainer proc{}  env:{}".format(cmd, current_env))

        if idx == 0:
            logger.info("Local start {} processes. First process distributed "
                        "environment info (Only For Debug): {}".format(
                            len(pod.trainers),
                            pretty_print_envs(proc_env, ("Distributed Envs",
                                                         "Value"))))
559
            logger.info(
560 561 562
                "details about PADDLE_TRAINER_ENDPOINTS can be found in "
                "{}/endpoints.log, and detail running logs maybe found in "
                "{}/workerlog.0".format(log_dir, log_dir))
563
        fn = None
K
kuizhiqing 已提交
564
        pre_fn = None if os.name == 'nt' else os.setsid
565 566
        if log_dir is not None:
            os.system("mkdir -p {}".format(log_dir))
567 568 569 570 571
            if os.path.exists("%s/endpoints.log" % log_dir):
                os.system("rm -f {}/endpoints.log".format(log_dir))
            with open("%s/endpoints.log" % log_dir, "w") as f:
                f.write("PADDLE_TRAINER_ENDPOINTS: \n")
                f.write("\n".join(cluster.trainers_endpoints()))
572 573 574 575 576
            if current_env.get("PADDLE_ENABLE_AUTO_MAPPING") is not None \
                and current_env.get("PADDLE_NEED_RANK_MAPPING").lower() == "true":
                fn = open("%s/prelaunchlog.%d" % (log_dir, idx), "a")
            else:
                fn = open("%s/workerlog.%d" % (log_dir, idx), "a")
K
kuizhiqing 已提交
577
            proc = subprocess.Popen(
K
kuizhiqing 已提交
578
                cmd, env=current_env, stdout=fn, stderr=fn, preexec_fn=pre_fn)
579
        else:
K
kuizhiqing 已提交
580
            proc = subprocess.Popen(cmd, env=current_env, preexec_fn=pre_fn)
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = t.rank
        tp.local_rank = idx
        tp.log_fn = fn
        tp.log_offset = fn.tell() if fn else None
        tp.cmd = cmd

        procs.append(tp)

    return procs


def pull_worker_log(tp):
    if tp.log_fn:
        with open(tp.log_fn.name, 'r') as fin:
            fin.seek(tp.log_offset, 0)
            for line in fin:
                try:
                    sys.stdout.write(line)
                except UnicodeEncodeError:
                    sys.stdout.write(
                        'UnicodeEncodeError occurs at this line. '
                        'Please refer to the original log file "%s"\n' %
                        tp.log_fn.name)
            tp.log_offset = fin.tell()


def watch_local_trainers(procs, nranks):
    try:
        error = False
        error_rank = []
        # wait all process finish or one error
        alive = False
        for p in procs:
            if p.log_fn and p.local_rank == 0:
                pull_worker_log(p)

            ret = p.proc.poll()
            if ret is None:
                alive = True
            elif ret != 0:
                error = True
                error_rank.append(p.rank)

        if error:
            terminate_local_procs(procs)
            exit(1)

    except KeyboardInterrupt:
        logger.warning("KeyboardInterrupt, exit")
        terminate_local_procs(procs)
K
kuizhiqing 已提交
634
        return
635 636 637 638 639
    except SystemExit:
        logger.error(
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log.".
            format(nranks, error_rank))
        terminate_local_procs(procs)
K
kuizhiqing 已提交
640
        return
641 642 643 644 645
    except:
        logger.error(
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log.".
            format(nranks, error_rank))
        terminate_local_procs(procs)
K
kuizhiqing 已提交
646
        return
647 648

    return alive
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679


def get_gpus(gpus):
    if gpus is None:
        gpus_num = fluid.core.get_cuda_device_count()
        res_gpus = [str(x) for x in range(0, gpus_num)]
    else:
        cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
        if cuda_visible_devices is None or cuda_visible_devices == "":
            res_gpus = [x.strip() for x in gpus.split(',')]
        else:
            # change gpus into relative values
            # e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.gpus=4,5,6,7;
            # therefore gpus=0,1,2,3
            cuda_visible_devices_list = cuda_visible_devices.split(',')
            for x in gpus.split(','):
                assert x in cuda_visible_devices_list, "Can't find "\
                    "your gpus %s in CUDA_VISIBLE_DEVICES[%s]."\
                    % (x, cuda_visible_devices)
            res_gpus = [
                cuda_visible_devices_list.index(x.strip())
                for x in gpus.split(',')
            ]
            logger.info("Change selected_gpus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "CUDA_VISIBLE_DEVICES:{}".format(
                            gpus, res_gpus, cuda_visible_devices_list))

    return res_gpus


680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
def get_xpus(xpus):
    if xpus is None:
        xpus_num = fluid.core.get_xpu_device_count()
        res_xpus = [str(x) for x in range(0, xpus_num)]
    else:
        xpu_visible_devices = os.getenv("XPU_VISIBLE_DEVICES")
        if xpu_visible_devices is None or xpu_visible_devices == "":
            res_xpus = [x.strip() for x in xpus.split(',')]
        else:
            # change xpus into relative values
            # e.g. XPU_VISIBLE_DEVICES=4,5,6,7; args.xpus=4,5,6,7;
            # therefore xpus=0,1,2,3
            xpu_visible_devices_list = xpu_visible_devices.split(',')
            for x in xpus.split(','):
                assert x in xpu_visible_devices_list, "Can't find "\
                    "your xpus %s in XPU_VISIBLE_DEVICES[%s]."\
                    % (x, xpu_visible_devices)
            res_xpus = [
                xpu_visible_devices_list.index(x.strip())
                for x in xpus.split(',')
            ]
            logger.info("Change selected_xpus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "XPU_VISIBLE_DEVICES:{}".format(
                            xpus, res_xpus, xpu_visible_devices_list))

    return res_xpus


K
kuizhiqing 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
def get_npus(npus):
    if npus is None:
        npus_num = fluid.core.get_npu_device_count()
        res_npus = [str(x) for x in range(0, npus_num)]
    else:
        npu_visible_devices = os.getenv("ASCEND_VISIBLE_DEVICES")
        if npu_visible_devices is None or npu_visible_devices == "":
            res_npus = [x.strip() for x in npus.split(',')]
        else:
            # change npus into relative values
            # e.g. ASCEND_VISIBLE_DEVICES=4,5,6,7; args.npus=4,5,6,7;
            # therefore npus=0,1,2,3
            npu_visible_devices_list = npu_visible_devices.split(',')
            for x in npus.split(','):
                assert x in npu_visible_devices_list, "Can't find "\
                    "your npus %s in ASCEND_VISIBLE_DEVICES[%s]."\
                    % (x, npu_visible_devices)
            res_npus = [
                npu_visible_devices_list.index(x.strip())
                for x in npus.split(',')
            ]
            logger.info("Change selected_npus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "ASCEND_VISIBLE_DEVICES:{}".format(
                            npus, res_npus, npu_visible_devices_list))

    return res_npus


X
xiongkun 已提交
738
def get_device_mode(backend):
K
kuizhiqing 已提交
739 740 741 742 743 744 745 746 747 748
    if backend == 'heter':
        if fluid.core.is_compiled_with_cuda() and \
            fluid.core.get_cuda_device_count() > 0:
            print("launch train in heter mode with GPU device.")
            return DeviceMode.GPU
        if fluid.core.is_compiled_with_xpu() and \
            fluid.core.get_xpu_device_count() > 0:
            print("launch train in heter mode with XPU device.")
            return DeviceMode.XPU
        if fluid.core.is_compiled_with_npu() and \
B
Baibaifan 已提交
749
            fluid.core.get_npu_device_count() > 0:
K
kuizhiqing 已提交
750 751 752 753
            print("launch train in heter mode with NPU device.")
            return DeviceMode.ASCEND_NPU

    if backend == 'hccl' and fluid.core.get_npu_device_count() > 0:
754 755 756
        print("launch train in ascend npu mode!")
        return DeviceMode.ASCEND_NPU

X
xiongkun 已提交
757
    if backend == 'nccl' and \
758 759
            fluid.core.get_cuda_device_count() > 0:
        print("launch train in GPU mode!")
760
        return DeviceMode.GPU
761

X
xiongkun 已提交
762
    if backend == 'bkcl' and fluid.core.get_xpu_device_count() > 0:
763 764
        print("launch train in XPU mode")
        return DeviceMode.XPU
765

X
xiongkun 已提交
766 767 768 769 770
    if backend == 'gloo':
        print("launch train in CPU mode")
        return DeviceMode.CPU

    raise RuntimeError("Don't supported devices")
771 772 773 774


def get_device_proc_info(args):
    # device_mode
X
xiongkun 已提交
775
    device_mode = get_device_mode(args.backend)
776 777 778 779 780 781 782

    # devices
    devices_per_proc = []
    if device_mode == DeviceMode.GPU:
        gpus = get_gpus(args.gpus)
        if args.nproc_per_node is not None:
            assert (len(gpus) % int(args.nproc_per_node)) ==0, \
J
Jiangxinz 已提交
783
                "gpus' number:{} mod args.nproc_per_node:{} must == 0".format(len(gpus), args.nproc_per_node)
784 785 786 787 788 789 790

            n = int(len(gpus) / int(args.nproc_per_node))
            devices_per_proc = [
                gpus[i:i + n] for i in six.moves.range(0, len(gpus), n)
            ]
        else:
            devices_per_proc = gpus
791
    elif device_mode == DeviceMode.ASCEND_NPU:
K
kuizhiqing 已提交
792 793 794 795 796 797 798 799 800 801 802
        npus = get_npus(args.npus)
        if args.nproc_per_node is not None:
            assert (len(npus) % int(args.nproc_per_node)) ==0, \
                "npus' number:{} mod args.nproc_per_node:{} must == 0".format(len(npus), args.nproc_per_node)

            n = int(len(npus) / int(args.nproc_per_node))
            devices_per_proc = [
                npus[i:i + n] for i in six.moves.range(0, len(npus), n)
            ]
        else:
            devices_per_proc = npus
803 804 805 806
    elif device_mode == DeviceMode.XPU:
        xpus = get_xpus(args.xpus)
        if args.nproc_per_node is not None:
            assert (len(xpus) % int(args.nproc_per_node)) == 0, \
J
Jiangxinz 已提交
807
                "xpus' number:{} mod args.nproc_per_node:{} must == 0".format(len(xpus), args.nproc_per_node)
808 809 810 811 812 813 814

            n = int(len(xpus) / int(args.nproc_per_node))
            devices_per_proc = [
                xpus[i:i + n] for i in six.moves.range(0, len(xpus), n)
            ]
        else:
            devices_per_proc = xpus
815
    elif device_mode == DeviceMode.CPU:
X
xiongkun 已提交
816 817 818
        if hasattr(args, "paddle_cpuonly") and args.nproc_per_node is None:
            #NOTE (xiongkun03) set it to cpu core number
            args.nproc_per_node = multiprocessing.cpu_count()
819 820 821 822 823
        if args.nproc_per_node is None:
            devices_per_proc = [0]
        else:
            devices_per_proc = [x for x in range(0, args.nproc_per_node)]
    else:
824
        assert False, "Can't support device_mode:{}, support only cpu|gpu|xpu now.".format(
825 826 827 828 829
            device_mode)

    return (device_mode, devices_per_proc)


830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
def direct_start(args):
    # run ps-cpu mode on paddlecloud, using given envs
    cmd = [sys.executable, "-u", args.training_script] + \
        args.training_script_args
    proc = subprocess.Popen(cmd)
    proc.wait()
    return


def get_custom_endpoints(origin_endpoints, offset=0):
    """
    origin_endpoint: ip:port
    user_define_endpoint: ip:(port+offset)
    """
    assert origin_endpoints != None
    paddle_user_define_endpoints_list = []
    for ip_port in origin_endpoints.split(","):
        ip = ip_port.split(":")[0]
        port = ip_port.split(":")[1]
        new_port = int(port) + offset
        paddle_user_define_endpoints_list.append(":".join((ip, str(new_port))))
    paddle_user_define_endpoints = ",".join(paddle_user_define_endpoints_list)
    return paddle_user_define_endpoints


855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
#def cloud_ps_heter_env_set(args):
#    environs = {}
#
#    paddle_trainer_endpoints = os.getenv("TRAINER_IP_PORT_LIST", "")
#    assert paddle_trainer_endpoints != None
#
#    paddle_pserver_endpoints = os.getenv("PSERVER_IP_PORT_LIST", "")
#    assert paddle_pserver_endpoints != None
#
#    # hard code for paddlecloud custom-framework
#    avilable_ports = os.getenv("TRAINER_PORTS", "").split(",")
#    assert len(
#        avilable_ports
#    ) >= 2, "set paddle_ports_num >= 2 in config.ini for paddlecloud job submit"
#
#    # hard code for paddlecloud custom-framework
#    trainers_num = len(paddle_pserver_endpoints.split(","))
#    assert trainers_num != 0
#    environs["PADDLE_TRAINERS_NUM"] = trainers_num
#    environs["TRAINERS_NUM"] = trainers_num
#
#    # hard code for paddlecloud custom-framework
#    environs["PADDLE_HETER_TRAINER_IP_PORT_LIST"] = paddle_trainer_endpoints
#    environs["PADDLE_PSERVERS_IP_PORT_LIST"] = paddle_pserver_endpoints
#    environs["PADDLE_TRAINER_ENDPOINTS"] = get_custom_endpoints(
#        paddle_pserver_endpoints, 1)
#    heter_worker_num = len(paddle_trainer_endpoints.split(","))
#    if (args.heter_worker_num != None) and (
#            heter_worker_num != args.heter_worker_num):
#        warnings.warn(
#            "Your fleetrun setting: heter_worker_num is {}, but we find {} device can be used, this setting has been changed.".
#            format(args.heter_worker_num, heter_worker_num))
#        args.heter_worker_num = heter_worker_num
#
#    for k, v in environs.items():
#        os.environ[k] = str(v)
#    logger.info("Set heter parameter server env: {}".format(
#        pretty_print_envs(environs)))
893 894


895 896
def get_mapped_cluster_without_rank_mapping(
        node_ips, node_ip, trainer_endpoints, device_mode, node_ranks):
897 898 899 900 901 902 903 904 905 906 907 908
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."
    cluster = Cluster(hdfs=None)
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
        pod.device_mode = device_mode
        cur_node_endpoints = trainer_endpoints[node_rank]

        # choose rank from global mapped ranks and set it to the trainer.
909 910
        ranks_per_node = node_ranks[node_rank]
        assert len(ranks_per_node) == 1
911 912 913 914
        for i in range(len(ranks_per_node)):
            trainer = Trainer()
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
            trainer.rank = ranks_per_node[i]
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


def get_mapped_cluster_from_args_without_rank_mapping(args, device_mode):
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."
    gpus_num = fluid.core.get_cuda_device_count()

    # parse ip-ranks json file
    cluster_topo = None
    with open(args.cluster_topo_path, "r") as json_file:
        cluster_topo = json.load(json_file)

    node_ips = []
    node_ranks = []
    for idx, cur_cluster_topo in enumerate(cluster_topo["machines"]):
        node_ips.append(cur_cluster_topo['addr'])
        node_ranks.append([idx])

    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()

    assert node_ip in node_ips, \
        "Can't find your local ip {%s} in node_ips: {%s}" % (node_ip, node_ips)
    node_rank = node_ips.index(node_ip)

    assert len(node_ranks) == len(node_ips), \
        "ranks length should be equal to ips length."

    logger.debug("parsed from args: node_ips:{} node_ip:{} "
                 "node_rank:{} node_ranks:{}".format(
                     node_ips, node_ip, node_rank, node_ranks[node_rank]))

    # NOTE: there are different number of global mapped ranks on each node.
    free_ports = []
    trainer_endpoints = []
    for ip in node_ips:
        node_rank = node_ips.index(ip)
        if os.environ.get('PADDLE_PORT') is not None:
            start_port = int(os.getenv("PADDLE_PORT", ""))
            free_ports = [
                x
                for x in range(start_port, start_port + len(node_ranks[
                    node_rank]))
            ]
        elif os.environ.get('FLAGS_START_PORT') is not None:
            start_port = int(os.environ.get('FLAGS_START_PORT'))
            free_ports = [
                x
                for x in range(start_port, start_port + len(node_ranks[
                    node_rank]))
            ]
        else:
            free_ports = find_free_ports(len(node_ranks[node_rank]))
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])

    return get_mapped_cluster_without_rank_mapping(
        node_ips, node_ip, trainer_endpoints, device_mode, node_ranks)


def get_mapped_cluster_with_rank_mapping(node_ips, node_ip, trainer_endpoints,
                                         device_mode, node_ranks,
                                         node_rank_mappings):
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."

    def get_relative_gpu_id(gpu_id):
        cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
        if cuda_visible_devices is None or cuda_visible_devices == "":
            return gpu_id
        else:
            cuda_visible_devices_list = cuda_visible_devices.split(',')
            relative_id = cuda_visible_devices_list.index(str(gpu_id))
            logger.info(
                "Change gpu id from {} to {} based on CUDA_VISIBLE_DEVICES {}".
                format(gpu_id, relative_id, cuda_visible_devices_list))
            return relative_id

    cluster = Cluster(hdfs=None)
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
        pod.device_mode = device_mode
        cur_node_endpoints = trainer_endpoints[node_rank]
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        # choose rank from global mapped ranks and set it to the trainer.
        ranks_per_node = node_ranks[node_rank]
        cur_node_rank_mapping = node_rank_mappings[node_rank]
        for i in range(len(ranks_per_node)):
            trainer = Trainer()
            local_device_ids = cur_node_rank_mapping["ranks"][str(
                ranks_per_node[i])]
            assert len(local_device_ids) == 1, \
                "Only support one process to one device mapping"
            trainer.accelerators.append(
                get_relative_gpu_id(local_device_ids[0]))
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
            trainer.rank = ranks_per_node[i]
1024 1025 1026 1027 1028 1029 1030
            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


1031
def get_mapped_cluster_from_args_with_rank_mapping(args, device_mode):
1032 1033 1034 1035 1036
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."
    gpus_num = fluid.core.get_cuda_device_count()

    # parse ip-ranks json file
1037 1038 1039 1040 1041 1042 1043
    rank_mapping_path = args.rank_mapping_path or os.getenv(
        "PADDLE_RANK_MAPPING_PATH")
    rank_mapping = None
    with open(rank_mapping_path, "r") as json_file:
        rank_mapping = json.load(json_file)
    # reset PADDLE_RANK_MAPPING_PATH env
    os.environ["PADDLE_RANK_MAPPING_PATH"] = ""
1044 1045

    node_ips = []
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    node_ranks = []
    node_rank_mappings = []
    for cur_rank_mapping in rank_mapping:
        node_ips.append(cur_rank_mapping['addr'])
        cur_node_rank_list = [
            int(i) for i in list(cur_rank_mapping['ranks'].keys())
        ]
        cur_node_rank_list.sort()
        node_ranks.append(cur_node_rank_list)
        node_rank_mappings.append(cur_rank_mapping)
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()

    assert node_ip in node_ips, \
        "Can't find your local ip {%s} in node_ips: {%s}" % (node_ip, node_ips)
    node_rank = node_ips.index(node_ip)

1069
    assert len(node_ranks[node_rank]) <= gpus_num, \
1070
        "number of ranks mapped to one node should not exceed the avaiable ones."
1071
    assert len(node_ranks) == len(node_ips), \
1072 1073 1074
        "ranks length should be equal to ips length."

    logger.debug("parsed from args: node_ips:{} node_ip:{} "
1075 1076
                 "node_rank:{} node_ranks:{}".format(
                     node_ips, node_ip, node_rank, node_ranks[node_rank]))
1077 1078 1079 1080 1081 1082

    # NOTE: there are different number of global mapped ranks on each node.
    free_ports = []
    trainer_endpoints = []
    for ip in node_ips:
        node_rank = node_ips.index(ip)
1083 1084 1085 1086 1087 1088 1089 1090
        if os.environ.get('PADDLE_PORT') is not None:
            start_port = int(os.getenv("PADDLE_PORT", ""))
            free_ports = [
                x
                for x in range(start_port, start_port + len(node_ranks[
                    node_rank]))
            ]
        elif os.environ.get('FLAGS_START_PORT') is not None:
1091
            start_port = int(os.environ.get('FLAGS_START_PORT'))
1092 1093 1094 1095 1096
            free_ports = [
                x
                for x in range(start_port, start_port + len(node_ranks[
                    node_rank]))
            ]
1097
        else:
1098
            free_ports = find_free_ports(len(node_ranks[node_rank]))
1099 1100
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])

1101 1102 1103
    return get_mapped_cluster_with_rank_mapping(node_ips, node_ip,
                                                trainer_endpoints, device_mode,
                                                node_ranks, node_rank_mappings)
1104 1105


1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
class ParameterServerLauncher(object):
    def __init__(self, args, distribute_mode):
        self.args = args
        self.distribute_mode = distribute_mode
        self.server_num = 0
        self.worker_num = 0
        self.heter_worker_num = 0

        self.server_endpoints = ""
        self.server_endpoints_ips = []
        self.server_endpoints_port = []

        self.worker_endpoints = ""
        self.worker_endpoints_ips = []
        self.worker_endpoints_port = []

        self.heter_worker_endpoints = ""
        self.heter_worker_endpoints_ips = []
        self.heter_worker_endpoints_port = []

        self.is_local = True
        self.current_node_ip = ""

1129 1130 1131 1132 1133 1134
        self.stage_trainer_num = []
        self.stage_heter_map = {}
        self.stage_list = []
        self.stage_device_map = {}
        self.stage_num = 0

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
        self.get_role_endpoints(args)

    def get_role_endpoints(self, args):
        if args.server_num:
            self.server_num = args.server_num
            if args.servers:
                assert len(
                    args.servers.split(",")
                ) == self.server_num, "The server_num and servers doesn't match. Expect servers endpoints num epual to server_num, but received servers enpoint num: {} and server_num {}".format(
                    len(args.servers.split(",")), self.server_num)
                self.server_endpoints = args.servers
            else:
                ports = get_ports(self.server_num, 0)
                self.server_endpoints = ",".join(
                    ["127.0.0.1:" + str(x) for x in ports])
        else:
            assert args.servers != "", "The setting of Parameter-Server must has server_num or servers."
            self.server_endpoints = args.servers
            self.server_num = len(self.server_endpoints.split(","))

        # get worker envs
        if args.worker_num:
            self.worker_num = args.worker_num
            if args.workers:
                assert len(
                    args.workers.split(",")
                ) == self.worker_num, "The worker_num and workers doesn't match. Expect workers endpoints num epual to worker_num, but received workers enpoint num: {} and worker_num {}".format(
                    len(args.workers.split(",")), self.worker_num)

                self.worker_endpoints = args.workers
            else:
                ports = get_ports(self.worker_num, self.server_num)
                self.worker_endpoints = ",".join(
                    ["127.0.0.1:" + str(x) for x in ports])
        else:
            assert args.workers != "", "The setting of Parameter-Server must has worker_num or workers."
            worker_endpoints_ips = [
                x.strip().split(":")[0] for x in args.workers.split(",")
            ]
            self.worker_num = len(worker_endpoints_ips)
            worker_endpoints_len = [
                len(x.strip().split(":")) for x in args.workers.split(",")
            ]

            if 1 in worker_endpoints_len:
                # if no port value in worker_endpoints, will set default port values.
                start_port = 6170
                worker_endpoints_port = range(
                    start_port + self.server_num,
                    start_port + self.server_num + self.worker_num, 1)
                # create endpoints str
                worker_endpoints = []
                for i in range(self.worker_num):
                    worker_endpoints.append(":".join((worker_endpoints_ips[
                        i], str(worker_endpoints_port[i]))))
                self.worker_endpoints = ",".join(worker_endpoints)
            else:
                self.worker_endpoints = args.workers

        # get heter worker envs
        if self.distribute_mode == DistributeMode.PS_HETER:
1196 1197 1198 1199 1200 1201 1202
            assert args.heter_devices != "", "The setting of Parameter-Server heter mode must has heter_devices."
            self.stage_device_map[1] = "cpu"  #  for cpu trainer
            heter_devices_list = args.heter_devices.split(";")
            for i in range(len(heter_devices_list)):
                self.stage_device_map[i + 2] = heter_devices_list[i]

            self.stage_heter_map[1] = self.worker_endpoints
1203
            if args.heter_worker_num:
1204
                self.stage_heter_trainer_num = args.heter_worker_num.split(";")
1205 1206 1207 1208 1209
                self.stage_heter_trainer_num = [
                    int(trainer_num)
                    for trainer_num in self.stage_heter_trainer_num
                ]

1210
                if args.heter_workers:
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
                    assert len(args.heter_workers.split(";")) == len(
                        self.stage_heter_trainer_num
                    ), "The stage_num and heter_workers doesn't match. Expect heter_workers endpoints stage num epual to heter_worker_num stage, but received heter_workers enpoint stage num: {} and heter_worker_num stage {}".format(
                        len(args.heter_workers.split(";")),
                        len(self.stage_heter_trainer_num))
                    heter_worker_endpoints_list = args.heter_workers.split(";")
                    self.heter_worker_endpoints = ""
                    for i in range(len(self.stage_heter_trainer_num)):
                        if self.heter_worker_endpoints != "":
                            self.heter_worker_endpoints += ","
                        heter_worker_endpoints = heter_worker_endpoints_list[
                            i].split(",")
                        assert len(
                            heter_worker_endpoints
                        ) == self.stage_heter_trainer_num[
                            i], "The heter trainer num in stage {} is not equal in args.heter_worker_num and args.heter_workers".format(
                                i)

                        heter_worker_endpoints_ips = [
                            x.strip().split(":")[0]
                            for x in heter_worker_endpoints
                        ]
                        heter_worker_endpoints_len = [
                            len(x.strip().split(":"))
                            for x in heter_worker_endpoints
                        ]

                        if 1 in heter_worker_endpoints_len:
                            # if no port value in heter_worker_endpoint, will set default port values.
                            heter_worker_endpoints_port = get_ports(
                                len(heter_worker_endpoints_ips), self.worker_num
                                + self.server_num + self.heter_worker_num)
                            new_heter_worker_endpoints = []
                            for j in range(len(heter_worker_endpoints_ips)):
                                new_heter_worker_endpoints.append(":".join((
                                    heter_worker_endpoints_ips[j], str(
                                        heter_worker_endpoints_port[j]))))
                            ip_port_list = ",".join(new_heter_worker_endpoints)
                        else:
                            ip_port_list = ",".join(heter_worker_endpoints)

                        self.stage_heter_map[i + 2] = ip_port_list
                        self.stage_list.extend([i + 2] *
                                               len(ip_port_list.split(',')))

                        self.heter_worker_num += self.stage_heter_trainer_num[i]
                        self.heter_worker_endpoints += ip_port_list
1258
                else:
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
                    for i in range(len(self.stage_heter_trainer_num)):
                        heter_trainer_num = self.stage_heter_trainer_num[i]
                        ports = get_ports(heter_trainer_num,
                                          self.server_num + self.worker_num +
                                          self.heter_worker_num)
                        ip_port_list = ",".join(
                            ["127.0.0.1:" + str(x) for x in ports])
                        self.stage_heter_map[i + 2] = ip_port_list
                        self.stage_list.extend([i + 2] *
                                               len(ip_port_list.split(',')))
                        self.heter_worker_num += heter_trainer_num
                        if self.heter_worker_endpoints != "":
                            self.heter_worker_endpoints += ","
                        self.heter_worker_endpoints += ip_port_list
1273 1274
            else:
                assert args.heter_workers != "", "The setting of Parameter-Server heter mode must has heter_worker_num or heter_workers."
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
                self.stage_heter_trainer_num = []
                heter_worker_endpoints_list = args.heter_workers.split(";")
                self.heter_worker_endpoints = ""
                for i in range(len(heter_worker_endpoints_list)):
                    heter_worker_endpoints = heter_worker_endpoints_list[
                        i].split(",")
                    self.stage_heter_trainer_num.append(
                        len(heter_worker_endpoints))
                    heter_worker_endpoints_ips = [
                        x.strip().split(":")[0] for x in heter_worker_endpoints
                    ]
                    heter_worker_endpoints_len = [
                        len(x.strip().split(":"))
                        for x in heter_worker_endpoints
                    ]
                    if 1 in heter_worker_endpoints_len:
                        # if no port value in heter_worker_endpoint, will set default port values.
                        heter_worker_endpoints_port = get_ports(
                            len(heter_worker_endpoints_ips), self.worker_num +
                            self.server_num + self.heter_worker_num)

                        new_heter_worker_endpoints = []
                        for j in range(len(heter_worker_endpoints_ips)):
                            new_heter_worker_endpoints.append(":".join((
                                heter_worker_endpoints_ips[j], str(
                                    heter_worker_endpoints_port[j]))))
                        ip_port_list = ",".join(new_heter_worker_endpoints)
                    else:
                        ip_port_list = ",".join(heter_worker_endpoints)

                    self.stage_heter_map[i + 2] = ip_port_list
                    self.stage_list.extend([i + 2] *
                                           len(ip_port_list.split(',')))

                    self.heter_worker_num += self.stage_heter_trainer_num[-1]
                    if self.heter_worker_endpoints != "":
                        self.heter_worker_endpoints += ","
                    self.heter_worker_endpoints += ip_port_list

            self.stage_trainer_num = [self.worker_num
                                      ] + self.stage_heter_trainer_num
            self.stage_num = len(self.stage_trainer_num)

        # get http_port
        if args.http_port:
1320
            http_port = [args.http_port]
1321 1322 1323
        else:
            http_port = get_ports(
                1, self.server_num + self.worker_num + self.heter_worker_num)
1324 1325
        http_ip = self.server_endpoints.split(",")[0].split(":")[0]
        self.http_port = http_ip + ":" + str(http_port[0])
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

        # check local or user define
        self.server_endpoints_ips = [
            x.strip().split(":")[0] for x in self.server_endpoints.split(",")
        ]
        self.worker_endpoints_ips = [
            x.strip().split(":")[0] for x in self.worker_endpoints.split(",")
        ]
        self.server_endpoints_port = [
            x.strip().split(":")[1] for x in self.server_endpoints.split(",")
        ]
        self.worker_endpoints_port = [
            x.strip().split(":")[1] for x in self.worker_endpoints.split(",")
        ]
1340 1341 1342 1343 1344 1345 1346 1347
        self.node_ips = []
        for ip in self.server_endpoints_ips:
            if ip not in self.node_ips:
                self.node_ips.append(ip)
        for ip in self.worker_endpoints_ips:
            if ip not in self.node_ips:
                self.node_ips.append(ip)

1348 1349 1350 1351 1352 1353 1354 1355 1356
        if self.distribute_mode == DistributeMode.PS_HETER:
            self.heter_worker_endpoints_ips = [
                x.strip().split(":")[0]
                for x in self.heter_worker_endpoints.split(",")
            ]
            self.heter_worker_endpoints_port = [
                x.strip().split(":")[1]
                for x in self.heter_worker_endpoints.split(",")
            ]
1357 1358 1359
            for ip in self.heter_worker_endpoints_ips:
                if ip not in self.node_ips:
                    self.node_ips.append(ip)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

        if len(set(self.node_ips)) == 1:
            self.is_local = True
            self.current_node_ip = self.node_ips[0]
        else:
            self.is_local = False
            pod_ip = os.getenv("POD_IP", None)
            if pod_ip == None:
                _, self.current_node_ip = get_host_name_ip()
            else:
                self.current_node_ip = pod_ip
1371 1372 1373 1374 1375 1376 1377 1378
            if not self.distribute_mode == DistributeMode.PS_HETER:
                assert self.current_node_ip in self.node_ips, "Can't find your local ip {%s} in args.servers and args.workers ips: {%s}" \
                      % (self.current_node_ip, self.node_ips)
        if self.current_node_ip in self.node_ips:
            self.node_rank = self.node_ips.index(self.current_node_ip)
            logger.debug(
                "parsed from args: node_ips:{} current_node_ip:{} node_rank:{}".
                format(self.node_ips, self.current_node_ip, self.node_rank))
1379 1380

    def start_ps(self):
1381 1382
        if not self.current_node_ip in self.node_ips:
            return
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
        cluster = Cluster(hdfs=None)
        server_rank = 0
        worker_rank = 0
        heter_worker_rank = 0
        for node_rank, ip in enumerate(self.node_ips):
            pod = Pod()
            pod.rank = node_rank
            pod.addr = ip
            for i in range(len(self.server_endpoints_ips)):
                if ip == self.server_endpoints_ips[i]:
                    server = Trainer()
                    server.endpoint = "%s:%s" % (ip,
                                                 self.server_endpoints_port[i])
                    server.rank = server_rank
                    server_rank += 1
                    pod.servers.append(server)
            for j in range(len(self.worker_endpoints_ips)):
                if ip == self.worker_endpoints_ips[j]:
                    worker = Trainer()
                    worker.endpoint = "%s:%s" % (ip,
                                                 self.worker_endpoints_port[j])
                    worker.rank = worker_rank
1405
                    worker.stage = 1
1406 1407 1408 1409 1410 1411 1412 1413
                    worker_rank += 1
                    pod.workers.append(worker)
            for k in range(len(self.heter_worker_endpoints_ips)):
                if ip == self.heter_worker_endpoints_ips[k]:
                    heter_worker = Trainer()
                    heter_worker.endpoint = "%s:%s" % (
                        ip, self.heter_worker_endpoints_port[k])
                    heter_worker.rank = heter_worker_rank
1414
                    heter_worker.stage = self.stage_list[k]
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
                    heter_worker_rank += 1
                    pod.heter_workers.append(heter_worker)

            cluster.pods.append(pod)

        pod = cluster.pods[self.node_rank]
        self.gloo_rendezvous_dir = tempfile.mkdtemp()

        # 3. subproces start
        self.procs = {"worker": [], "server": [], "heter_worker": []}
        self.cmds = {"worker": [], "server": [], "heter_worker": []}
        self.log_fns = {"worker": [], "server": [], "heter_worker": []}

        self.start_pod_server(self.args, pod)
        self.start_pod_worker(self.args, pod)
1430 1431
        if self.distribute_mode == DistributeMode.PS_HETER:
            self.start_pod_heter_worker(self.args, pod)
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

        logger.info(
            "Please check servers, workers and heter_worker logs in {}/workerlog.*, {}/serverlog.* and {}/heterlog.*".
            format(self.args.log_dir, self.args.log_dir, self.args.log_dir))

        # 4. wait for finish training
        if len(self.procs["worker"]) > 0:
            # if node has worker procs
            # only wait worker to finish here
            for i, proc in enumerate(self.procs["worker"]):
                self.procs["worker"][i].proc.wait()
                if len(self.log_fns["worker"]) > 0:
                    self.log_fns["worker"][i].close()
            logger.info(
                "all workers exit, going to finish parameter server and heter_worker."
            )
            if len(self.procs["heter_worker"]) > 0:
                for i, proc in enumerate(self.procs["heter_worker"]):
                    self.log_fns["heter_worker"][i].close()
                    self.procs["heter_worker"][i].proc.terminate()
                logger.info("all heter_worker are killed")

            if len(self.procs["server"]) > 0:
                for i, proc in enumerate(self.procs["server"]):
                    self.log_fns["server"][i].close()
                    self.procs["server"][i].proc.terminate()
                logger.info("all parameter server are killed")

        else:
            # if node has not worker procs
            # blocking training process
            if len(self.procs["server"]) > 0:
                for i, proc in enumerate(self.procs["server"]):
                    self.procs["server"][i].proc.wait()

            if len(self.procs["heter_worker"]) > 0:
                for i, proc in enumerate(self.procs["heter_worker"]):
                    self.procs["heter_worker"][i].proc.wait()

        if os.path.exists(self.gloo_rendezvous_dir):
            shutil.rmtree(self.gloo_rendezvous_dir)

    def start_pod_server(self, args, pod):
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)
        for idx, cur_server in enumerate(pod.servers):
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
            if self.distribute_mode == DistributeMode.PS_HETER:
                proc_env = {
                    "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                    "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
                    "PADDLE_ALL_HETER_TRAINER_IP_PORT_LIST":
                    self.heter_worker_endpoints,
                    "PADDLE_PORT": cur_server.endpoint.split(":")[1],
                    "TRAINING_ROLE": "PSERVER",
                    "PADDLE_TRAINERS_NUM": str(self.worker_num),
                    "POD_IP": cur_server.endpoint.split(":")[0],
                    "PADDLE_WITH_GLOO":
                    str(os.getenv("PADDLE_WITH_GLOO", "0")),
                    "PADDLE_GLOO_RENDEZVOUS": "3",
                    "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                    "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
                }
            else:
                proc_env = {
                    "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                    "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
                    "PADDLE_PORT": cur_server.endpoint.split(":")[1],
                    "TRAINING_ROLE": "PSERVER",
                    "PADDLE_TRAINERS_NUM": str(self.worker_num),
                    "POD_IP": cur_server.endpoint.split(":")[0],
                    "PADDLE_WITH_GLOO":
                    str(os.getenv("PADDLE_WITH_GLOO", "0")),
                    "PADDLE_GLOO_RENDEZVOUS": "3",
                    "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                    "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
                }
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
            current_env.update(proc_env)

            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["server"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local server start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.servers),
                        pretty_print_envs(proc_env, ("Distributed Envs", "Value"
                                                     ))))

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/serverlog.%d" % (args.log_dir, idx), "w")
                self.log_fns["server"].append(fn)
                proc = subprocess.Popen(
                    cmd, env=current_env, stdout=fn, stderr=fn)
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_server.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["server"].append(tp)

    def start_pod_worker(self, args, pod):
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)

        heter_device_num = 0
        device_list = []
        if fluid.core.is_compiled_with_cuda():
            device_list = get_gpus(args.gpus)
            heter_device_num = len(device_list)
        elif fluid.core.is_compiled_with_xpu():
            heter_device_num = fluid.core.get_xpu_device_count()
            device_list = [str(x) for x in range(0, heter_device_num)]

        for idx, cur_worker in enumerate(pod.workers):
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
            device_id = "0" if heter_device_num == 0 else str(device_list[(
                idx) % heter_device_num])
            if self.distribute_mode == DistributeMode.PS_HETER:
                proc_env = {
                    "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                    "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
                    "PADDLE_TRAINERS_NUM": str(self.worker_num),
                    "PADDLE_STAGE_TRAINERS_NUM": str(self.stage_trainer_num),
                    "STAGE_ID": "1",
                    "STAGE_NUM": str(self.stage_num),
                    "PADDLE_PREVIOUS_HETER_TRAINER_IP_PORT_LIST": "",
                    "PADDLE_NEXT_HETER_TRAINER_IP_PORT_LIST":
                    self.stage_heter_map[2],
                    "PADDLE_ALL_HETER_TRAINER_IP_PORT_LIST":
                    self.heter_worker_endpoints,
                    "HETER_DEVICE_TYPE": self.stage_device_map[1],
                    "TRAINING_ROLE": "TRAINER",
                    "POD_IP": cur_worker.endpoint.split(":")[0],
                    "PADDLE_PORT": cur_worker.endpoint.split(":")[1],
                    "PADDLE_TRAINER_ID": str(cur_worker.rank),
                    "PADDLE_WITH_GLOO":
                    str(os.getenv("PADDLE_WITH_GLOO", "0")),
                    "PADDLE_GLOO_RENDEZVOUS": "3",
                    "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                    "FLAGS_selected_gpus": "0",
                    "FLAGS_selected_xpus": "0",
                    "CUDA_VISIBLE_DEVICES": device_id,
                    "XPU_VISIBLE_DEVICES": device_id,
                    "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
                }
            else:
                proc_env = {
                    "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                    "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
                    "PADDLE_TRAINERS_NUM": str(self.worker_num),
                    "TRAINING_ROLE": "TRAINER",
                    "POD_IP": cur_worker.endpoint.split(":")[0],
                    "PADDLE_PORT": cur_worker.endpoint.split(":")[1],
                    "PADDLE_TRAINER_ID": str(cur_worker.rank),
                    "PADDLE_WITH_GLOO":
                    str(os.getenv("PADDLE_WITH_GLOO", "0")),
                    "PADDLE_GLOO_RENDEZVOUS": "3",
                    "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                    "FLAGS_selected_gpus": "0",
                    "FLAGS_selected_xpus": "0",
                    "CUDA_VISIBLE_DEVICES": device_id,
                    "XPU_VISIBLE_DEVICES": device_id,
                    "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
                }
1608

1609
            current_env.update(proc_env)
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["worker"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local worker start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.workers),
                        pretty_print_envs(proc_env, ("Distributed Envs", "Value"
                                                     ))))

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/workerlog.%d" % (args.log_dir, idx), "w")
                self.log_fns["worker"].append(fn)
                proc = subprocess.Popen(
                    cmd, env=current_env, stdout=fn, stderr=fn)
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_worker.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["worker"].append(tp)

    def start_pod_heter_worker(self, args, pod):
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)

        heter_device_num = 0
        device_list = []
        if fluid.core.is_compiled_with_cuda():
            device_list = get_gpus(args.gpus)
            heter_device_num = len(device_list)
        elif fluid.core.is_compiled_with_xpu():
            heter_device_num = fluid.core.get_xpu_device_count()
            device_list = [str(x) for x in range(0, heter_device_num)]

        for idx, cur_heter_worker in enumerate(pod.heter_workers):
1657 1658 1659
            device_id = "0" if heter_device_num == 0 else str(device_list[(
                idx) % heter_device_num])
            stage_id = cur_heter_worker.stage
1660 1661 1662
            proc_env = {
                "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
1663 1664 1665 1666 1667 1668
                "PADDLE_NEXT_HETER_TRAINER_IP_PORT_LIST":
                self.stage_heter_map[stage_id + 1]
                if stage_id <= self.stage_num - 1 else "",
                "PADDLE_PREVIOUS_HETER_TRAINER_IP_PORT_LIST":
                self.stage_heter_map[stage_id - 1],
                "PADDLE_ALL_HETER_TRAINER_IP_PORT_LIST":
1669
                self.heter_worker_endpoints,
1670 1671 1672
                "HETER_DEVICE_TYPE": self.stage_device_map[stage_id],
                "STAGE_ID": str(stage_id),
                "STAGE_NUM": str(self.stage_num),
1673 1674 1675
                "PADDLE_PORT": cur_heter_worker.endpoint.split(":")[1],
                "TRAINING_ROLE": "HETER_TRAINER",
                "PADDLE_TRAINERS_NUM": str(self.worker_num),
1676
                "PADDLE_STAGE_TRAINERS_NUM": str(self.stage_trainer_num),
1677
                "POD_IP": cur_heter_worker.endpoint.split(":")[0],
L
lilong12 已提交
1678
                "PADDLE_WITH_GLOO": str(os.getenv("PADDLE_WITH_GLOO", "0")),
1679
                "PADDLE_GLOO_RENDEZVOUS": "3",
1680 1681 1682 1683 1684
                "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                "FLAGS_selected_gpus": "0",
                "FLAGS_selected_xpus": "0",
                "CUDA_VISIBLE_DEVICES": device_id,
                "XPU_VISIBLE_DEVICES": device_id,
1685
                "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
            }
            current_env.update(proc_env)

            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["heter_worker"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local heter_worker start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.heter_workers),
                        pretty_print_envs(proc_env, ("Distributed Envs", "Value"
                                                     ))))

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/heterlog.%d" % (args.log_dir, idx), "w")
                self.log_fns["heter_worker"].append(fn)
                proc = subprocess.Popen(
                    cmd, env=current_env, stdout=fn, stderr=fn)
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_heter_worker.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["heter_worker"].append(tp)
X
xiongkun 已提交
1719 1720 1721


def check_backend(backend):
K
kuizhiqing 已提交
1722 1723 1724 1725 1726
    if backend not in ['nccl', 'gloo', 'bkcl', 'auto', 'hccl', 'heter']:
        raise ValueError("paddle.distributed initialize error, "
                         "backend argument can only be one of "
                         "'nccl', 'gloo', 'bkcl', 'auto', 'hccl', 'heter' "
                         "but got %s" % backend)
X
xiongkun 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

    if backend == 'nccl' and not fluid.core.is_compiled_with_cuda():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with cuda but you assign 'nccl' as backend."
        )

    if backend == 'bkcl' and not fluid.core.is_compiled_with_xpu():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with xpu but you assign 'bkcl' as backend."
        )

K
kuizhiqing 已提交
1740 1741 1742 1743 1744 1745
    if backend == 'hccl' and not fluid.core.is_compiled_with_npu():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with npu but you assign 'hccl' as backend."
        )

X
xiongkun 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

def block_windows_and_macos(backend):
    if backend != 'gloo': return
    if utils.OS_NAME.startswith('darwin'):  # MACOS , block
        raise ValueError(
            "You are going to using gloo on macos, but currently is not supported"
        )
    if utils.IS_WINDOWS:  # MACOS , block
        raise ValueError(
            "You are going to using gloo on windows, but currently is not supported"
        )


def get_backend_by_compile_flag():
    if fluid.core.is_compiled_with_cuda():
        return 'nccl'

    if fluid.core.is_compiled_with_xpu():
        return 'bkcl'

K
kuizhiqing 已提交
1766 1767 1768
    if fluid.core.is_compiled_with_npu():
        return 'hccl'

X
xiongkun 已提交
1769
    return 'gloo'