gan_api.md 11.9 KB
Newer Older
Z
zchen0211 已提交
1 2
# Design for GAN

Z
gan_api  
zchen0211 已提交
3
GAN (General Adversarial Net [https://arxiv.org/abs/1406.2661]) is an important model for unsupervised learning and widely used in many areas. 
Z
zchen0211 已提交
4

Z
gan_api  
zchen0211 已提交
5
It applies several important concepts in machine learning system design, including building and running subgraphs, dependency tracing, different optimizers in one executor and so forth.
Z
zchen0211 已提交
6

Z
gan_api  
zchen0211 已提交
7
In our GAN design, we wrap it as a user-friendly easily customized python API to design different models. We take the conditional DC-GAN (Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks [https://arxiv.org/abs/1511.06434]) as an example due to its good performance on image generation.
Z
zchen0211 已提交
8

Z
gan api  
zchen0211 已提交
9 10 11 12
| important building blocks | People in Charge  | Required |
|---------------------------|-------------------|----------|
| convolution 2d (done)     | Chengduo          | Y        |
| cudnn conv 2d (missing)   | Chengduo          | N        |
Z
gan api  
zchen0211 已提交
13 14
| deconv 2d (missing)       | Zhuoyuan, Zhihong | Y        |
| cudnn deconv 2d (missing) | Zhuoyuan, Zhihong | N        |
Z
gan api  
zchen0211 已提交
15 16 17
| batch norm (missing)      | Zhuoyuan, Jiayi   | Y        |
| cudnn batch norm (missing)| Zhuoyuan, Jiayi   | N        |
| max-pooling (done)        | ?                 | Y        |
Z
gan api  
zchen0211 已提交
18
| cudnn-max-pool (missing)  | Chengduo          | Y        |
Z
gan api  
zchen0211 已提交
19 20 21 22
| fc (done)                 | ?                 | Y        |
| softmax loss (done)       | ?                 | Y        |
| reshape op (done)         | ?                 | Y        |
| Dependency Engine (done)  | Jiayi             | Y *      |
Z
gan api  
zchen0211 已提交
23
| Python API (done)         | Longfei, Jiayi    | Y *      |
Z
gan api  
zchen0211 已提交
24
| Executor (done)           | Tony              | Y *      |
Z
gan api  
zchen0211 已提交
25
| Multi optimizer (woking)  | Longfei           | Y *      |
Z
gan api  
zchen0211 已提交
26
| Optimizer with any para   | ?                 | Y *      |
Z
gan api  
zchen0211 已提交
27 28
| Concat op (done)          | ?                 | N (Cond) |
| Repmat op (done)          | ?                 | N (Cond) |
Z
new gan  
zchen0211 已提交
29 30


Z
zchen0211 已提交
31 32 33 34 35
<p align="center">
<img src="./dcgan.png" width = "90%" align="center"/><br/>
Borrow this photo from the original DC-GAN paper.
</p>

Z
zchen0211 已提交
36 37 38
## The Conditional-GAN might be a class. 
This design we adopt the popular open source design in https://github.com/carpedm20/DCGAN-tensorflow and https://github.com/rajathkmp/DCGAN. It contains following data structure:

Z
zchen0211 已提交
39
- DCGAN(object): which contains everything required to build a GAN model. It provides following member functions methods as API:
Z
zchen0211 已提交
40

Z
zchen0211 已提交
41
- __init__(...): Initialize hyper-parameters (like conv dimension and so forth), and declare model parameters of discriminator and generator as well.
Z
zchen0211 已提交
42

Z
zchen0211 已提交
43
- generator(z, y=None): Generate a fake image from input noise z. If the label y is provided, the conditional GAN model will be chosen.
Z
zchen0211 已提交
44 45
Returns a generated image.

Z
zchen0211 已提交
46
- discriminator(image):
Z
zchen0211 已提交
47 48 49
Given an image, decide if it is from a real source or a fake one. 
Returns a 0/1 binary label.

Z
zchen0211 已提交
50
- build_model(self):
Z
zchen0211 已提交
51
build the whole GAN model, define training loss for both generator and discrimator.
Z
zchen0211 已提交
52

Z
zchen0211 已提交
53
## Discussion on Engine Functions required to build GAN
Z
gan_api  
zchen0211 已提交
54
- Trace the tensor and variable dependency in the engine executor. (Very critical, otherwise GAN can'be be trained correctly)
Z
zchen0211 已提交
55 56 57 58 59 60 61
- Different optimizers responsible for optimizing different loss.

To be more detailed, we introduce our design of DCGAN as following:

### Class member Function: Initializer
- Set up hyper-parameters, including condtional dimension, noise dimension, batch size and so forth.
- Declare and define all the model variables. All the discriminator parameters are included in the list self.theta_D and all the generator parameters are included in the list self.theta_G.
Z
gan api  
zchen0211 已提交
62
```python
Z
zchen0211 已提交
63 64 65 66 67 68 69 70 71
class DCGAN(object):
  def __init__(self, y_dim=None):
  
    # hyper parameters  
    self.y_dim = y_dim # conditional gan or not
    self.batch_size = 100
    self.z_dim = z_dim # input noise dimension

    # define parameters of discriminators
Z
zchen0211 已提交
72
    self.D_W0 = pd.Variable(shape=[3,3, 1, 128], data=pd.gaussian_normal_randomizer())
Z
gan api  
zchen0211 已提交
73
    self.D_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
Z
zchen0211 已提交
74 75 76 77
    self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.D_W2 = pd.Varialble(np.random.rand(128, 1))
    self.D_b2 = pd.Variable(np.zeros(128))
Z
gan api  
zchen0211 已提交
78
    self.theta_D = [self.D_W0, self.D_b0, self.D_W1, self.D_b1, self.D_W2, self.D_b2]
Z
zchen0211 已提交
79 80

    # define parameters of generators
Z
gan api  
zchen0211 已提交
81 82
    self.G_W0 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
Z
zchen0211 已提交
83 84 85 86
    self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.G_W2 = pd.Varialble(np.random.rand(128, 1))
    self.G_b2 = pd.Variable(np.zeros(128))
Z
gan api  
zchen0211 已提交
87 88
    self.theta_G = [self.G_W0, self.G_b0, self.G_W1, self.G_b1, self.G_W2, self.G_b2]
```
Z
zchen0211 已提交
89

Z
zchen0211 已提交
90 91 92 93
### Class member Function: Generator
- Given a noisy input z, returns a fake image.
- Concatenation, batch-norm, FC operations required;
- Deconv layer required, which is missing now...
Z
gan api  
zchen0211 已提交
94
```python
Z
gan api  
zchen0211 已提交
95 96
class DCGAN(object):
  def generator(self, z, y = None):
Z
zchen0211 已提交
97 98 99 100
    # input z: the random noise
    # input y: input data label (optional)
    # output G_im: generated fake images
    
Z
zchen0211 已提交
101
    if not self.y_dim:
Z
gan api  
zchen0211 已提交
102
      z = pd.layer.concat(1, [z, y])
Z
zchen0211 已提交
103
      
Z
gan api  
zchen0211 已提交
104 105 106
    G_h0 = pd.layer.fc(z, self.G_w0, self.G_b0)
    G_h0_bn = pd.layer.batch_norm(G_h0)
    G_h0_relu = pd.layer.relu(G_h0_bn)
Z
zchen0211 已提交
107
    
Z
gan api  
zchen0211 已提交
108 109 110
    G_h1 = pd.layer.deconv(G_h0_relu, self.G_w1, self.G_b1)
    G_h1_bn = pd.layer.batch_norm(G_h1)
    G_h1_relu = pd.layer.relu(G_h1_bn)
Z
zchen0211 已提交
111
    
Z
gan api  
zchen0211 已提交
112 113
    G_h2 = pd.layer.deconv(G_h1_relu, self.G_W2, self.G_b2))
    G_im = pd.layer.tanh(G_im)
Z
zchen0211 已提交
114
    return G_im
Z
gan api  
zchen0211 已提交
115 116
```

Z
zchen0211 已提交
117 118 119
### Class member function: Discriminator
- Given a noisy input z, returns a fake image.
- Concatenation, Convolution, batch-norm, FC, Leaky-ReLU operations required;
Z
gan api  
zchen0211 已提交
120
```python
Z
gan api  
zchen0211 已提交
121 122
class DCGAN(object):
  def discriminator(self, image):
Z
zchen0211 已提交
123 124
    # input image: either generated images or real ones
    # output D_h2: binary logit of the label
Z
zchen0211 已提交
125

Z
gan api  
zchen0211 已提交
126 127 128
    D_h0 = pd.layer.conv2d(image, w=self.D_w0, b=self.D_b0)
    D_h0_bn = pd.layer.batchnorm(h0)
    D_h0_relu = pd.layer.lrelu(h0_bn)
Z
zchen0211 已提交
129
    
Z
gan api  
zchen0211 已提交
130 131 132
    D_h1 = pd.layer.conv2d(D_h0_relu, w=self.D_w1, b=self.D_b1)
    D_h1_bn = pd.layer.batchnorm(D_h1)
    D_h1_relu = pd.layer.lrelu(D_h1_bn)
Z
zchen0211 已提交
133
    
Z
gan api  
zchen0211 已提交
134
    D_h2 = pd.layer.fc(D_h1_relu, w=self.D_w2, b=self.D_b2)
Z
zchen0211 已提交
135
    return D_h2
Z
gan api  
zchen0211 已提交
136
```
Z
zchen0211 已提交
137 138

### Class member function: Build the model
Z
zchen0211 已提交
139 140 141
- Define data readers as placeholders to hold the data;
- Build generator and discriminators;
- Define two training losses for discriminator and generator, respectively. 
Z
zchen0211 已提交
142
If we have execution dependency engine to back-trace all tensors, the module building our GAN model will be like this:
Z
gan api  
zchen0211 已提交
143
```python
Z
gan api  
zchen0211 已提交
144 145
class DCGAN(object):
  def build_model(self):
Z
zchen0211 已提交
146 147 148 149 150 151
    if self.y_dim:
        self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
    self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.z = pd.data(tf.float32, [None, self.z_size])
    
Z
zchen0211 已提交
152 153
    # step 1: generate images by generator, classify real/fake images with discriminator
    if self.y_dim: # if conditional GAN, includes label
Z
zchen0211 已提交
154 155 156 157 158
        self.G = self.generator(self.z, self.y)
        self.D_t = self.discriminator(self.images)
        # generated fake images
        self.sampled = self.sampler(self.z, self.y)
        self.D_f = self.discriminator(self.G)
Z
zchen0211 已提交
159
    else: # original version of GAN
Z
zchen0211 已提交
160 161 162 163 164
        self.G = self.generator(self.z)
        self.D_t = self.discriminator(self.images)
        # generate fake images
        self.sampled = self.sampler(self.z)
        self.D_f = self.discriminator(self.images)
Z
zchen0211 已提交
165
    
Z
zchen0211 已提交
166
    # step 2: define the two losses
Z
zchen0211 已提交
167 168 169 170 171
    self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
    self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
    self.d_loss = self.d_loss_real + self.d_loss_fake
    
    self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
Z
gan api  
zchen0211 已提交
172
```
Z
zchen0211 已提交
173

Z
zchen0211 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
If we do not have dependency engine but blocks, the module building our GAN model will be like this:
```python
class DCGAN(object):
  def build_model(self, default_block):
    # input data in the default block
    if self.y_dim:
        self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
    self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    # self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.z = pd.data(tf.float32, [None, self.z_size])

    # step 1: generate images by generator, classify real/fake images with discriminator
    with pd.default_block().g_block():
      if self.y_dim: # if conditional GAN, includes label
        self.G = self.generator(self.z, self.y)
        self.D_g = self.discriminator(self.G, self.y)
      else: # original version of GAN
        self.G = self.generator(self.z)
        self.D_g = self.discriminator(self.G, self.y)
      self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_g, np.ones(self.batch_szie))
    
    with pd.default_block().d_block():
      if self.y_dim: # if conditional GAN, includes label
        self.D_t = self.discriminator(self.images, self.y)
        self.D_f = self.discriminator(self.G, self.y)
      else: # original version of GAN
        self.D_t = self.discriminator(self.images)
        self.D_f = self.discriminator(self.G)

      # step 2: define the two losses
      self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
      self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
      self.d_loss = self.d_loss_real + self.d_loss_fake
```
Some small confusion and problems with this design:
Z
gan api  
zchen0211 已提交
209
- D\_g and D\_f are actually the same thing, but has to be written twice; i.e., if we want to run two sub-graphs conceptually, the same codes have to be written twice if they are shared by the graph.
Z
zchen0211 已提交
210 211
- Requires ability to create a block anytime, rather than in if-else or rnn only;

Z
zchen0211 已提交
212
## Main function for the demo:
Z
zchen0211 已提交
213 214 215 216
Generally, the user of GAN just need to the following things:
- Define an object as DCGAN class;
- Build the DCGAN model;
- Specify two optimizers for two different losses with respect to different parameters.
Z
gan api  
zchen0211 已提交
217
```python
Z
zchen0211 已提交
218 219 220 221 222
# pd for short, should be more concise.
from paddle.v2 as pd
import numpy as np
import logging

Z
zchen0211 已提交
223
if __name__ == "__main__":
Z
zchen0211 已提交
224
    # dcgan class in the default graph/block
Z
gan api  
zchen0211 已提交
225 226 227 228
    # if we use dependency engine as tensorflow
    # the codes, will be slightly different like:
    # dcgan = DCGAN()
    # dcgan.build_model()
Z
zchen0211 已提交
229 230 231
    with pd.block() as def_block:
      dcgan = DCGAN()
      dcgan.build_model(def_block)
Z
zchen0211 已提交
232 233 234 235 236

    # load mnist data
    data_X, data_y = self.load_mnist()
    
    # Two subgraphs required!!!
Z
gan api  
zchen0211 已提交
237 238 239 240 241 242
    with pd.block().d_block():
      d_optim = pd.train.Adam(lr = .001, beta= .1)
      d_step = d_optim.minimize(dcgan.d_loss, dcgan.theta_D)
    with pd.block.g_block():
      g_optim = pd.train.Adam(lr = .001, beta= .1)
      g_step = pd.minimize(dcgan.g_loss, dcgan.theta_G)
Z
zchen0211 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256

    # executor
    sess = pd.executor()
    
    # training
    for epoch in xrange(10000):
      for batch_id in range(N / batch_size):
        idx = ...
        # sample a batch
        batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size]
        # sample z
        batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])

        if batch_id % 2 == 0:
Z
gan api  
zchen0211 已提交
257
          sess.run(d_step, 
Z
zchen0211 已提交
258 259 260 261
                   feed_dict = {dcgan.images: batch_im,
                                dcgan.y: batch_label,
                                dcgan.z: batch_z})
        else:
Z
gan api  
zchen0211 已提交
262
          sess.run(g_step,
Z
zchen0211 已提交
263
                   feed_dict = {dcgan.z: batch_z})
Z
gan api  
zchen0211 已提交
264
```
Z
zchen0211 已提交
265 266 267 268

# More thinking about dependency engine v.s. block design:
- What if we just want to run an intermediate result? Do we need to run the whole block/graph?
- Should we call eval() to get the fake images in the first stage? And then train the discriminator in the second stage?