spectral_norm_op.cc 9.9 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/spectral_norm_op.h"
Z
zhhsplendid 已提交
13 14 15

#include <memory>

D
dengkaipeng 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class SpectralNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
K
Kaipeng Deng 已提交
29 30 31 32
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "SpectralNorm");
    OP_INOUT_CHECK(ctx->HasInput("U"), "Input", "U", "SpectralNorm");
    OP_INOUT_CHECK(ctx->HasInput("V"), "Input", "V", "SpectralNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SpectralNorm");
D
dengkaipeng 已提交
33 34

    auto dim_weight = ctx->GetInputDim("Weight");
D
dengkaipeng 已提交
35
    auto rank_weight = dim_weight.size();
36 37 38 39 40 41 42 43 44 45
    PADDLE_ENFORCE_GE(rank_weight, 2,
                      platform::errors::InvalidArgument(
                          "The rank of Input(Weights) should be greater equal "
                          "than 2, but received Weight rank(%d)",
                          rank_weight));
    PADDLE_ENFORCE_LE(rank_weight, 5,
                      platform::errors::InvalidArgument(
                          "The rank of Input(Weights) should be less equal "
                          "than 5, but received Weight rank(%d)",
                          rank_weight));
D
dengkaipeng 已提交
46 47 48

    int dim = ctx->Attrs().Get<int>("dim");
    int power_iters = ctx->Attrs().Get<int>("power_iters");
49 50 51 52 53 54 55 56 57 58
    auto dim_valid = dim == 0 || dim == 1;
    PADDLE_ENFORCE_EQ(
        dim_valid, true,
        platform::errors::InvalidArgument(
            "Attr(dim) can only be 0 or 1, but received %d", dim));
    PADDLE_ENFORCE_GE(
        power_iters, 0,
        platform::errors::InvalidArgument(
            "Attr(power_iters) should be greater equal then 0, but received %d",
            power_iters));
D
dengkaipeng 已提交
59

D
dengkaipeng 已提交
60 61 62 63 64 65 66 67 68
    int h = dim_weight[dim];
    int w = 1;
    for (int i = 0; i < rank_weight; i++) {
      if (i != dim) {
        w *= dim_weight[i];
      }
    }
    auto dim_u = ctx->GetInputDim("U");
    auto dim_v = ctx->GetInputDim("V");
69 70 71

    if (ctx->IsRuntime() || (dim_u[0] > 0 && h > 0)) {
      PADDLE_ENFORCE_EQ(dim_u[0], h,
72 73 74 75 76
                        platform::errors::InvalidArgument(
                            "Input(U) dimension[0] should be equal to "
                            "Input(Weight) dimension[Attr(dim)], but received "
                            "U dimension[0](%d) != Weight dimension[%d](%d)",
                            dim_u[0], dim, h));
77 78 79 80 81
    }

    if (ctx->IsRuntime() || (dim_v[0] > 0 && w > 0)) {
      PADDLE_ENFORCE_EQ(
          dim_v[0], w,
82 83 84 85 86 87
          platform::errors::InvalidArgument(
              "Input(V) dimension[0] should be equal to the product of "
              "Input(Weight) dimension except dimension[Attr(dim)], but "
              "received V dimension[0](%d) != product of Input(Weight) "
              "dimension(%d)",
              dim_v[0], w));
88
    }
D
dengkaipeng 已提交
89

D
dengkaipeng 已提交
90 91 92 93 94 95 96
    ctx->SetOutputDim("Out", dim_weight);
    ctx->ShareLoD("Weight", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
97 98
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Weight"), ctx.GetPlace());
D
dengkaipeng 已提交
99 100 101 102 103 104 105 106
  }
};

class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Weight",
             "The input weight tensor of spectral_norm operator, "
D
dengkaipeng 已提交
107
             "This can be a 2-D, 3-D, 4-D, 5-D tensor which is the "
K
Kaipeng Deng 已提交
108 109
             "weights of fc, conv1d, conv2d, conv3d layer. "
             "The data type is float32 or float64.");
D
dengkaipeng 已提交
110 111 112
    AddInput("U",
             "The weight_u tensor of spectral_norm operator, "
             "This can be a 1-D tensor in shape [H, 1],"
T
tianshuo78520a 已提交
113
             "H is the 1st dimensions of Weight after reshape"
114 115
             "corresponding by Attr(dim). As for Attr(dim) = 1"
             "in conv2d layer with weight shape [M, C, K1, K2]"
D
dengkaipeng 已提交
116
             "Weight will be reshape to [C, M*K1*K2], U will"
117
             "be in shape [C, 1].");
D
dengkaipeng 已提交
118
    AddInput("V",
119
             "The weight_v tensor of spectral_norm operator, "
D
dengkaipeng 已提交
120
             "This can be a 1-D tensor in shape [W, 1], "
T
tianshuo78520a 已提交
121
             "W is the 2nd dimensions of Weight after reshape "
D
dengkaipeng 已提交
122 123 124
             "corresponding by Attr(dim). As for Attr(dim) = 1 "
             "in conv2d layer with weight shape [M, C, K1, K2] "
             "Weight will be reshape to [C, M*K1*K2], V will "
125
             "be in shape [M*K1*K2, 1].");
D
dengkaipeng 已提交
126 127 128 129 130
    AddOutput("Out",
              "The output weight tensor of spectral_norm operator, "
              "This tensor is in same shape with Input(Weight).");

    AddAttr<int>("dim",
D
dengkaipeng 已提交
131 132
                 "The index of dimension which should be permuted "
                 "to the first before reshaping Input(Weight) to "
D
dengkaipeng 已提交
133 134
                 "matrix, it should be set as 0 if Input(Weight) is "
                 "the weight of fc layer, and should be set as 1 if "
D
dengkaipeng 已提交
135 136
                 "Input(Weight) is the weight of conv layer, "
                 "default 0.")
D
dengkaipeng 已提交
137 138
        .SetDefault(0);
    AddAttr<int>("power_iters",
D
dengkaipeng 已提交
139 140
                 "number of power iterations to calculate "
                 "spectral norm, default 1.")
D
dengkaipeng 已提交
141 142
        .SetDefault(1);
    AddAttr<float>("eps",
D
dengkaipeng 已提交
143
                   "epsilon for numerical stability in "
K
Kaipeng Deng 已提交
144 145 146
                   "calculating norms, it will be added to "
                   "the denominator to aviod divide zero. "
                   "Default 1e-12.")
D
dengkaipeng 已提交
147 148 149
        .SetDefault(1e-12);

    AddComment(R"DOC(
D
dengkaipeng 已提交
150
          This layer calculates the spectral normalization value of weight of
151 152
          fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
          tensor.
D
dengkaipeng 已提交
153

154 155 156
          Spectral normalization stabilizes the training of critic in GANs
          (Generative Adversarial Networks). This layer rescaling weight tensor
          with spectral normalize value.
D
dengkaipeng 已提交
157

158
          For spectral normalization calculations, we rescaling weight
D
dengkaipeng 已提交
159
          tensor with :math:`\sigma`, while :math:`\sigma{\mathbf{W}}` is
160

D
dengkaipeng 已提交
161
            $$\sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \\frac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}$$
162

D
dengkaipeng 已提交
163
          We calculate :math:`\sigma{\mathbf{W}}` through power iterations as
164

D
dengkaipeng 已提交
165
            $$
166
            \mathbf{v} = \mathbf{W}^{T} \mathbf{u}
D
dengkaipeng 已提交
167 168 169 170 171
            $$
            $$
            \mathbf{v} = \\frac{\mathbf{v}}{\|\mathbf{v}\|_2}
            $$
            $$
172
            \mathbf{u} = \mathbf{W}^{T} \mathbf{v}
D
dengkaipeng 已提交
173 174 175 176
            $$
            $$
            \mathbf{u} = \\frac{\mathbf{u}}{\|\mathbf{u}\|_2}
            $$
177

D
dengkaipeng 已提交
178
          And :math:`\sigma` should be
179

D
dengkaipeng 已提交
180
            $$\sigma{\mathbf{W}} = \mathbf{u}^{T} \mathbf{W} \mathbf{v}$$
181 182 183

          For details of spectral normalization, please refer to paper: 
          `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
D
dengkaipeng 已提交
184 185 186 187
         )DOC");
  }
};

H
hong 已提交
188 189
template <typename T>
class SpectralNormGradOpMaker : public framework::SingleGradOpMaker<T> {
Z
zhhsplendid 已提交
190
 public:
H
hong 已提交
191
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Z
zhhsplendid 已提交
192 193

 protected:
194
  void Apply(GradOpPtr<T> op) const override {
Z
zhhsplendid 已提交
195 196
    op->SetType("spectral_norm_grad");

H
hong 已提交
197 198 199 200
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Weight", this->Input("Weight"));
    op->SetInput("U", this->Input("U"));
    op->SetInput("V", this->Input("V"));
Z
zhhsplendid 已提交
201

H
hong 已提交
202
    op->SetOutput(framework::GradVarName("Weight"), this->InputGrad("Weight"));
Z
zhhsplendid 已提交
203

H
hong 已提交
204
    op->SetAttrMap(this->Attrs());
Z
zhhsplendid 已提交
205 206 207
  }
};

D
dengkaipeng 已提交
208 209 210 211 212 213
class SpectralNormOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
K
Kaipeng Deng 已提交
214 215 216 217 218 219 220
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight",
                   "SpectralNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("U"), "Input", "U", "SpectralNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("V"), "Input", "V", "SpectralNormGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "SpectralNormGrad");

221 222 223
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::NotFound("Input(Out@GRAD) should not be null"));
D
dengkaipeng 已提交
224 225 226 227 228 229 230 231
    auto dim_x = ctx->GetInputDim("Weight");
    if (ctx->HasOutput(framework::GradVarName("Weight"))) {
      ctx->SetOutputDim(framework::GradVarName("Weight"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
232 233
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Weight"), ctx.GetPlace());
D
dengkaipeng 已提交
234 235 236 237 238 239 240 241
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(spectral_norm, ops::SpectralNormOp, ops::SpectralNormOpMaker,
H
hong 已提交
242 243
                  ops::SpectralNormGradOpMaker<paddle::framework::OpDesc>,
                  ops::SpectralNormGradOpMaker<paddle::imperative::OpBase>);
D
dengkaipeng 已提交
244 245 246 247 248 249 250 251 252
REGISTER_OPERATOR(spectral_norm_grad, ops::SpectralNormOpGrad);
REGISTER_OP_CPU_KERNEL(
    spectral_norm,
    ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    spectral_norm_grad,
    ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, double>);