completion.py 76.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
from copy import deepcopy
17
import time
18 19 20 21

from paddle.fluid import core
from paddle.fluid import framework

22
from .utils import print_program_with_dist_attr, _is_gradient_clip_op
23
from .operators import find_compatible_distributed_operator_impls
24
from .dist_context import get_default_distributed_context, _node_id
25 26 27 28
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
29
from .process_mesh import ProcessMesh
30
from .process_group import get_world_process_group
31
from paddle.distributed.fleet.meta_optimizers.common import OpRole
32 33


34 35 36 37
def compute_compatible_process_mesh(process_mesh_list):
    """Compute the compatible process mesh given a list of process meshes."""
    if not process_mesh_list:
        return None
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    def _compute_compatible_process_mesh_two(pm1, pm2):
        if pm1 is None:
            return True, pm2
        if pm2 is None:
            return True, pm1
        if pm1 == pm2:
            return True, pm1
        if pm1.processes == pm2.processes:
            if len(pm1.topology) >= len(pm2.topology):
                return True, pm1
            else:
                return True, pm2
        process_set1 = set(pm1.processes)
        process_set2 = set(pm2.processes)
        if process_set1.issubset(process_set2):
            return True, pm2
        if process_set2.issubset(process_set1):
            return True, pm1
        return False, None

    compatible_result = None
    for process_mesh in process_mesh_list:
        compatible, compatible_result = _compute_compatible_process_mesh_two(
            compatible_result, process_mesh)
        if not compatible:
            return None
    return copy.deepcopy(compatible_result)


def compute_compatible_dim_mapping(dim_mapping_list):
    """Compute the compatible dim mapping given a list of dim mapping."""
    if not dim_mapping_list:
        return None
72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    def _compute_compatible_dim_mapping_two(dm1, dm2):
        if dm1 == -1:
            return True, dm2
        if dm2 == -1:
            return True, dm1
        if dm1 == dm2:
            return True, dm1
        return False, None

    compatible_result = -1
    for mapping in dim_mapping_list:
        compatible, compatible_result = _compute_compatible_dim_mapping_two(
            compatible_result, mapping)
        if not compatible:
            return None
    return compatible_result


def compute_compatible_dims_mapping(dims_mapping_list):
    """Compute the compatible dims mapping given a list of dims mapping.
       Each of dims mapping is also a list.
94
    """
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
        if dims_mapping is None:
            return None
        if len(dims_mapping) != length:
            return None
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
            list(dim_mappings))
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


113 114 115 116 117 118 119 120 121 122 123 124 125 126
def merge_process_mesh_two(pm1, pm2):
    process_set1 = set()
    process_set2 = set()
    if pm1 is None and pm2 is None:
        return None
    if pm1 is not None:
        process_set1 = set(pm1.processes)
    if pm2 is not None:
        process_set2 = set(pm2.processes)
    merged_process_set = process_set1.union(process_set2)
    merged_process_mesh = ProcessMesh(list(merged_process_set))
    return merged_process_mesh


127 128 129 130 131 132 133 134 135 136 137 138 139
def _validate_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(
                process_mesh.topology):
            return False
    for i in range(len(process_mesh.topology)):
        if dims_mapping.count(i) > 1:
            return False
    return True


140
class Completer:
141

142 143 144 145 146 147 148 149 150 151
    def __init__(self, dist_context):
        assert dist_context is not None
        self._dist_context = dist_context

    def _update_tensor_node_dims_mapping(self, tensor_node, fwd=True):
        changed = False
        if (not tensor_node.is_var()) or (tensor_node.var() is None):
            return False
        tensor_desc = tensor_node.var()
        # Skip reader tensor
152 153 154
        if tensor_desc.type() == core.VarDesc.VarType.READER \
            or tensor_desc.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
            or tensor_desc.type == core.VarDesc.VarType.STEP_SCOPES:
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
            return False
        tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
            tensor_node)
        assert tensor_dist_attr is not None
        if tensor_dist_attr.is_annotated("dims_mapping"):
            return False
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        if fwd:
            dims_mapping_list = []
            for pred_op_node in tensor_node.inputs:
                if pred_op_node.op() is not None:
                    if pred_op_node.op().type() == "create_py_reader" \
                        or pred_op_node.op().type() == "create_double_buffer_reader" \
                        or pred_op_node.op().type() == "read":
                        continue
                    op_dist_attr = self._dist_context.get_op_dist_attr_for_graph(
                        pred_op_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            tensor_desc.name())
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
                dims_mapping_list)
179 180 181
            if not _validate_dims_mapping(compatible_dims_mapping,
                                          tensor_dist_attr.process_mesh):
                return False
182 183 184
            if (compatible_dims_mapping is not None) and \
                (compatible_dims_mapping != tensor_dims_mapping):
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
185 186
                changed = True
        else:
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
            dims_mapping_list = []
            for succ_op_node in tensor_node.outputs:
                if succ_op_node.op() is not None:
                    if succ_op_node.op().type() == "create_py_reader" \
                        or succ_op_node.op().type() == "create_double_buffer_reader" \
                        or succ_op_node.op().type() == "read":
                        continue
                    op_dist_attr = self._dist_context.get_op_dist_attr_for_graph(
                        succ_op_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
                            tensor_desc.name())
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
                dims_mapping_list)
203 204 205
            if not _validate_dims_mapping(compatible_dims_mapping,
                                          tensor_dist_attr.process_mesh):
                return False
206 207 208
            if (compatible_dims_mapping is not None) and \
                (compatible_dims_mapping != tensor_dims_mapping):
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
209
                changed = True
210
        return changed
211

212 213 214 215 216 217 218 219
    def _update_op_node_dims_mapping(self, op_node, fwd=True):
        changed = False
        if (not op_node.is_op()) or (op_node.op() is None):
            return False
        # Skip reader op
        op_desc = op_node.op()
        if op_desc.type() == "create_py_reader" \
            or op_desc.type() == "create_double_buffer_reader" \
220
            or op_desc.type() == "while" \
221 222 223 224
            or op_desc.type() == "read":
            return False
        dist_op = self._dist_context.get_dist_op_for_graph(op_node)
        op_dist_attr = dist_op.dist_attr
225
        original_op_dist_attr = copy.deepcopy(op_dist_attr)
226 227
        if fwd:
            for tensor_node in op_node.inputs:
228
                if tensor_node.is_var() and tensor_node.var() is not None:
229 230 231 232 233 234 235 236 237 238 239 240 241 242
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_input_dims_mapping(
                            tensor_desc.name()):
                        continue
                    tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
                            tensor_desc.name())
                        compatible_dims_mapping = compute_compatible_dims_mapping(
                            [op_dims_mapping, tensor_dims_mapping])
243 244 245 246
                        if not _validate_dims_mapping(
                                compatible_dims_mapping,
                                op_dist_attr.process_mesh):
                            continue
247 248 249 250 251 252
                        if (compatible_dims_mapping is not None) and \
                            (compatible_dims_mapping != op_dims_mapping):
                            op_dist_attr.set_input_dims_mapping(
                                tensor_desc.name(), compatible_dims_mapping)
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
253 254
            op_dist_impls = find_compatible_distributed_operator_impls(dist_op,
                                                                       fwd=True)
255 256 257 258 259 260 261 262
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
263 264
                    if op_dist_impl.is_auto_compatible(dist_op) \
                        and dist_op.validate_dist_attr():
265 266 267 268 269 270 271 272
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
273
                    else:
274 275 276 277 278 279 280 281
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
282
        else:
283
            for tensor_node in op_node.outputs:
284
                if tensor_node.is_var() and tensor_node.var() is not None:
285 286 287 288 289 290 291 292 293 294 295 296 297 298
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_output_dims_mapping(
                            tensor_desc.name()):
                        continue
                    tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            tensor_desc.name())
                        compatible_dims_mapping = compute_compatible_dims_mapping(
                            [op_dims_mapping, tensor_dims_mapping])
299 300 301 302
                        if not _validate_dims_mapping(
                                compatible_dims_mapping,
                                op_dist_attr.process_mesh):
                            continue
303 304 305 306 307 308
                        if (compatible_dims_mapping is not None) and \
                            (compatible_dims_mapping != op_dims_mapping):
                            op_dist_attr.set_output_dims_mapping(
                                tensor_desc.name(), compatible_dims_mapping)
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
309
            op_dist_impls = find_compatible_distributed_operator_impls(
310
                dist_op, fwd=False)
311 312 313 314 315 316 317 318
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
319 320
                    if op_dist_impl.is_auto_compatible(dist_op) \
                        and dist_op.validate_dist_attr():
321 322 323 324 325 326 327 328
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
329
                    else:
330 331 332 333 334 335 336 337
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
338
        return changed
339

340 341 342 343 344 345 346
    def _update_dims_mapping_between_graphs(self):
        changed = False
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                parent_node)
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                child_node)
347 348
            if parent_node_dist_attr.process_mesh != child_node_dist_attr.process_mesh:
                continue
349 350 351 352
            parent_node_dims_mapping = parent_node_dist_attr.dims_mapping
            child_node_dims_mapping = child_node_dist_attr.dims_mapping
            compatible_dims_mapping = compute_compatible_dims_mapping(
                [parent_node_dims_mapping, child_node_dims_mapping])
353 354 355
            if not _validate_dims_mapping(compatible_dims_mapping,
                                          parent_node_dist_attr.process_mesh):
                return False
356 357 358 359 360 361
            if (compatible_dims_mapping is not None) \
                and (compatible_dims_mapping != parent_node_dims_mapping):
                parent_node_dist_attr.dims_mapping = compatible_dims_mapping
                changed = True
            if (compatible_dims_mapping is not None) \
                and (compatible_dims_mapping != child_node_dims_mapping):
362
                child_node_dist_attr.dims_mapping = compatible_dims_mapping
363 364
                changed = True
        return changed
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    def _update_dims_mapping_for_special(self):
        # Set the dims_mapping of a tensor to the dims_mapping inside the op which produces it
        op_nodes = self._dist_context._serial_ordered_op_nodes
        for op_node in op_nodes:
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() and tensor_node.var() is not None:
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            tensor_desc.name())
                        tensor_dist_attr.dims_mapping = op_dims_mapping

383 384 385 386
    def _update_dims_mapping(self):
        # Complete dims_mapping for each node
        reach_fix_point = False
        while not reach_fix_point:
387
            changed = False
388 389 390 391 392 393 394 395 396 397 398 399 400 401
            for is_fwd in [True, False]:
                all_nodes = self._dist_context.serial_ordered_nodes \
                    if is_fwd else reversed(self._dist_context.serial_ordered_nodes)
                for node in all_nodes:
                    if node.is_var() and node.var() is not None:
                        tensor_changed = self._update_tensor_node_dims_mapping(
                            node, fwd=is_fwd)
                        if tensor_changed:
                            changed = True
                    if node.is_op() and node.op() is not None:
                        op_changed = self._update_op_node_dims_mapping(
                            node, fwd=is_fwd)
                        if op_changed:
                            changed = True
402 403 404
                graph_changed = self._update_dims_mapping_between_graphs()
                if graph_changed:
                    changed = True
405
            if changed:
406
                reach_fix_point = False
407
            else:
408
                reach_fix_point = True
409
        self._update_dims_mapping_for_special()
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    def _update_process_mesh_by_nearest(self, op_node, nearest_op_node):
        op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
        # Set the process mesh of the op node by its nearest op node
        if not op_dist_attr.is_annotated("process_mesh"):
            process_mesh = op_dist_attr.process_mesh
            nearest_op_dis_attr = self._dist_context.get_dist_attr_for_graph(
                nearest_op_node)
            nearest_process_mesh = nearest_op_dis_attr.process_mesh
            compatible_process_mesh = compute_compatible_process_mesh(
                [process_mesh, nearest_process_mesh])
            if compatible_process_mesh is not None \
                and process_mesh != compatible_process_mesh:
                op_dist_attr.process_mesh = compatible_process_mesh
        # Skip the process_mesh setting of inputs and outputs of while_op
        if op_dist_attr.op_type == "while":
            return
        # Set the process mesh of the op node's leaf-inputs
        for tensor_node in op_node.inputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
                tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                    tensor_node)
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                # Skip the non-leaf var node
                if len(tensor_node.inputs) != 0:
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh])
                if compatible_process_mesh is not None \
                    and tensor_dist_attr.process_mesh != compatible_process_mesh:
                    tensor_dist_attr.process_mesh = compatible_process_mesh
442
                # Set the process mesh of the op node's outputs
443 444 445 446 447 448 449 450 451 452 453 454 455
        for tensor_node in op_node.outputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
                tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                    tensor_node)
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh])
                if compatible_process_mesh is not None \
                    and tensor_dist_attr.process_mesh != compatible_process_mesh:
                    tensor_dist_attr.process_mesh = compatible_process_mesh

    def _update_process_mesh_for_specials(self):
456

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
        def _find_nearest_tensor_node_before(nodes, idx, var_name):
            for node in reversed(nodes[:idx]):
                if node.is_var() and node.var() is not None \
                    and node.var().name() == var_name:
                    return node

        def _find_nearest_tensor_node_after(nodes, idx, var_name):
            for node in nodes[idx + 1:]:
                if node.is_var() and node.var() is not None \
                    and node.var().name() == var_name:
                    return node

        def _find_nodes_related_to_cond(source_node):
            related_nodes = []
            visited = set()
            frontier = list()
            frontier.append(source_node)
            # BFS
            while len(frontier) != 0:
                cur = frontier[0]
                frontier = frontier[1:]
                if _node_id(cur) in visited:
                    continue
                # TODO: need more restrictions
481 482
                neighbors = cur.inputs + cur.outputs
                for node in neighbors:
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
                    if node.is_var() and node.var() is not None:
                        if node.var().type() != core.VarDesc.VarType.READER \
                            and len(node.var().shape()) == 1:
                            frontier.append(node)
                            related_nodes.append(node)
                    if node.is_op() and node.op() is not None:
                        flag = True
                        if node.op().type() == "create_py_reader" \
                            or node.op().type() == "create_double_buffer_reader" \
                            or node.op().type() == "read":
                            flag = False
                        for tensor_node in node.inputs:
                            if tensor_node.is_var() and tensor_node.var(
                            ) is not None:
                                if tensor_node.var().type() == core.VarDesc.VarType.READER \
                                    or len(tensor_node.var().shape()) != 1:
                                    flag = False
                                    break
                        for tensor_node in node.outputs:
                            if tensor_node.is_var() and tensor_node.var(
                            ) is not None:
                                if tensor_node.var().type() == core.VarDesc.VarType.READER \
                                    or len(tensor_node.var().shape()) != 1:
                                    flag = False
                                    break
                        if flag:
                            frontier.append(node)
                            related_nodes.append(node)
                visited.add(_node_id(cur))
            return related_nodes

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
        def _make_dims_mapping_replicate(dist_attr):
            if isinstance(dist_attr, TensorDistributedAttribute):
                for i, _ in enumerate(dist_attr.dims_mapping):
                    dist_attr.dims_mapping[i] = -1
            if isinstance(dist_attr, OperatorDistributedAttribute):
                for arg_name in dist_attr.inputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
                    dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                for arg_name in dist_attr.outputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
                    dist_attr.set_output_dims_mapping(arg_name,
                                                      new_dims_mapping)

533 534 535
        # Amend the process meshes related to while_op
        for while_op_node, while_op_node_idx in self._while_op_nodes.values():
            sub_graph_id = while_op_node.op()._block_attr_id("sub_block")
536
            sub_graph = self._dist_context.serial_graph.get_sub_graph(
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
                sub_graph_id)
            sub_graph_nodes = list(sub_graph.all_nodes())
            while_dist_op = self._dist_context.get_dist_op_for_graph(
                while_op_node)
            while_op_dist_attr = while_dist_op.dist_attr

            # Step 1: set the process mesh of while_op to the merged process mesh of its subblock
            merged_process_mesh = while_op_dist_attr.process_mesh
            for node in sub_graph_nodes:
                if (node.is_var() and node.var() is not None) \
                    or (node.is_op() and node.op() is not None):
                    dist_attr = self._dist_context.get_dist_attr_for_graph(node)
                    merged_process_mesh = merge_process_mesh_two(
                        merged_process_mesh, dist_attr.process_mesh)
            while_op_dist_attr.process_mesh = merged_process_mesh
552
            _make_dims_mapping_replicate(while_op_dist_attr)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

            # Step 2: set the related nodes of while_op to the process mesh of while_op
            # Step 2.1: Find related nodes of cond var the graph of while_op
            cond_tensor_related_nodes = []
            cond_tensor_name = while_op_node.op().input("Condition")[0]
            cond_tensor_node = None
            for node in while_op_node.inputs:
                if node.is_var() and node.var() is not None \
                    and node.var().name() == cond_tensor_name:
                    cond_tensor_node = node
                    cond_tensor_related_nodes.append(cond_tensor_node)
                    break

            cond_tensor_related_nodes.extend(
                _find_nodes_related_to_cond(cond_tensor_node))

            # Step 2.2: Find related nodes of cond var in the subgraph of while_op
            cond_tensor_node = None
            for node in reversed(sub_graph_nodes):
                if node.is_var() and node.var() is not None \
                    and node.var().name() == cond_tensor_name \
                        and len(node.outputs) == 0:
                    cond_tensor_node = node
                    break

            cond_tensor_related_nodes.extend(
                _find_nodes_related_to_cond(cond_tensor_node))
            # Step 2.3: Add the StepScops output of while_op
            stepscopes_tensor_name = while_op_node.op().output("StepScopes")[0]
            stepscopes_tensor_node = None
            for output_node in while_op_node.outputs:
                if output_node.is_var() and output_node.var() is not None \
                    and output_node.var().name() == stepscopes_tensor_name:
                    stepscopes_tensor_node = output_node
            cond_tensor_related_nodes.append(stepscopes_tensor_node)
            # Step 2.4: Set the process meshes of all nodes related to cond var to the process mesh of while op
            for node in cond_tensor_related_nodes:
                tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
                    node)
                tensor_dist_attr.process_mesh = merged_process_mesh
593
                _make_dims_mapping_replicate(tensor_dist_attr)
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

            # Step 3: set the process meshes of the inputs in while_op to the process meshes of the outside input nodes
            while_op_inputs_dist_attrs = while_op_dist_attr.inputs_dist_attrs
            for tensor_name, tensor_dist_attr in while_op_inputs_dist_attrs.items(
            ):
                nearest_tensor_node = _find_nearest_tensor_node_before(
                    self._dist_context.serial_ordered_nodes, while_op_node_idx,
                    tensor_name)
                nearest_tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
                    nearest_tensor_node)
                tensor_dist_attr.process_mesh = nearest_tensor_dist_attr.process_mesh

            # Step 4: set the process meshes of the outputs in while_op to the process meshes of the outside output nodes
            while_op_outputs_dist_attrs = while_op_dist_attr.outputs_dist_attrs
            for tensor_name, tensor_dist_attr in while_op_outputs_dist_attrs.items(
            ):
                nearest_tensor_node = _find_nearest_tensor_node_before(
                    self._dist_context.serial_ordered_nodes, while_op_node_idx,
                    tensor_name)
                if nearest_tensor_node is None:
                    nearest_tensor_node = _find_nearest_tensor_node_after(
                        self._dist_context.serial_ordered_nodes,
                        while_op_node_idx, tensor_name)
                nearest_tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
                    nearest_tensor_node)
                tensor_dist_attr.process_mesh = nearest_tensor_dist_attr.process_mesh

        # Amend the process meshes related to array
        for array_node_list in self._array_nodes.values():
            merged_process_mesh = None
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
                    array_node)
                merged_process_mesh = merge_process_mesh_two(
                    merged_process_mesh, dist_attr.process_mesh)
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
                    array_node)
                dist_attr.process_mesh = merged_process_mesh
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
                _make_dims_mapping_replicate(dist_attr)

    def _update_process_mesh_between_graphs(self):
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                parent_node)
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                child_node)
            parent_node_dist_attr.process_mesh = child_node_dist_attr.process_mesh
            compatible_process_mesh = compute_compatible_process_mesh([
                parent_node_dist_attr.process_mesh,
                child_node_dist_attr.process_mesh
            ])
            if compatible_process_mesh is not None \
                and parent_node_dist_attr.process_mesh != compatible_process_mesh:
                parent_node_dist_attr.process_mesh = compatible_process_mesh
            if compatible_process_mesh is not None \
                and child_node_dist_attr.process_mesh != compatible_process_mesh:
                child_node_dist_attr.process_mesh = compatible_process_mesh
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

    def _update_process_mesh(self):
        ordered_op_nodes = self._dist_context._serial_ordered_op_nodes

        # Step 1: Set the annotated process meshes from tensors to the first ops using them
        ordered_tensor_nodes = self._dist_context._serial_ordered_tensor_nodes
        for tensor_node in ordered_tensor_nodes:
            tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                tensor_node)
            if not tensor_dist_attr.is_annotated("process_mesh"):
                continue
            first_op_node = None
            for op_node in ordered_op_nodes:
                # TODO: Need a better rule for the control flow ops.
                # For now, do not set the process mesh of while_op from its inputs
                if op_node.op().type() == "while":
                    continue
                for input_tensor_node in op_node.inputs:
                    if _node_id(tensor_node) == _node_id(input_tensor_node):
                        first_op_node = op_node
                        break
                if first_op_node is not None:
                    break
            if first_op_node is None:
                continue
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(
                first_op_node)
            if op_dist_attr is not None and not op_dist_attr.is_annotated(
                    "process_mesh"):
                compatible_process_mesh = compute_compatible_process_mesh(
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh])
                if compatible_process_mesh is not None \
                    and op_dist_attr.process_mesh != compatible_process_mesh:
                    op_dist_attr.process_mesh = compatible_process_mesh

        # Step 2: set the process meshes of ops with the nearest op before them
        # Step 2.1: find the first op node which has the process mesh
        idx_of_first_op_node_has_process_mesh = -1
        for idx, op_node in enumerate(ordered_op_nodes):
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            if op_dist_attr.process_mesh is not None \
                and idx_of_first_op_node_has_process_mesh == -1:
                idx_of_first_op_node_has_process_mesh = idx
                # Reuse the following method to set the related tensors for same op node
                self._update_process_mesh_by_nearest(op_node, op_node)
        # Step 2.2: set the process meshes of ops by the nearest op node after the first op node
        if idx_of_first_op_node_has_process_mesh + 1 > len(ordered_op_nodes):
            return None
700 701
        for idx, op_node in enumerate(
                ordered_op_nodes[idx_of_first_op_node_has_process_mesh + 1:]):
702
            original_idx = idx_of_first_op_node_has_process_mesh + idx + 1
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
            nearest_op_node = ordered_op_nodes[original_idx - 1]
            nearest_op_dist_attr = self._dist_context.get_dist_attr_for_graph(
                nearest_op_node)
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            assert nearest_op_dist_attr.process_mesh is not None
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)
        # Step 2.3: set the process meshes of ops by the nearest op node before the first op node
        nearest_op_node = ordered_op_nodes[
            idx_of_first_op_node_has_process_mesh]
        for op_node in ordered_op_nodes[:idx_of_first_op_node_has_process_mesh]:
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)

        # Step 3: adjust the process meshes for special ops
        self._update_process_mesh_for_specials()

718
        # Step 4: adjust the process meshes between graphs
719 720
        self._update_process_mesh_between_graphs()

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    def _prepare(self):
        self._while_op_nodes = {}
        self._array_nodes = {}
        self._node_pairs_between_graphs = []
        all_nodes = self._dist_context.serial_ordered_nodes
        for idx, node in enumerate(all_nodes):
            if node.is_op():
                if node.op().type() == "while":
                    self._while_op_nodes[_node_id(node)] = (node, idx)
                if node.op().type() == "read_from_array":
                    array_var_name = node.op().input("X")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
                if node.op().type() == "write_to_array":
                    array_var_name = node.op().output("Out")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
                    self._array_nodes[array_var_name].append(node.outputs[0])
            if node.is_var() and node.var() is not None:
                if node.node.graph_id() != 0:
                    for before_node in reversed(all_nodes[:idx]):
                        if before_node.is_var() and before_node.var() is not None \
                            and before_node.node.graph_id() == node.node.graph_id() - 1 \
                                and before_node.var().name() == node.var().name():
                            self._node_pairs_between_graphs.append(
                                (before_node, node))
                    for after_node in all_nodes[idx + 1:]:
                        if after_node.is_var() and after_node.var() is not None \
                            and after_node.node.graph_id() == node.node.graph_id() - 1 \
                                and after_node.var().name() == node.var().name():
                            self._node_pairs_between_graphs.append(
                                (after_node, node))

756
    def complete_forward_annotation(self, serial_main_program=None):
757 758 759
        """ Complete annotation for the partial annotated serial_main_program.
        Arguments:
            serial_main_program: partial annotated serial_main_program.
760
        Returns:e
761 762 763
            serial_main_program: completed annotated serial_main_program.
        """

764 765 766
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
767
            self._dist_context._serial_main_program = serial_main_program
768

769 770 771 772
        start_time = time.time()
        # print("start time", start_time, flush=True)
        if not self._dist_context.data_parallel:
            self._dist_context.initialize(with_graph=True)
773

774
            # self._dist_context.validate_dist_attr_for_program()
775

776
            self._prepare()
777

778
            self._update_process_mesh()
779

780 781 782 783 784 785 786 787 788 789 790 791
            self._update_dims_mapping()

            # Copy the corresponding distributed attribute from graph to serial_main_program
            self._dist_context.copy_dist_attr_from_graph_to_program()
        else:
            self._dist_context.initialize(with_graph=False)

            # A fast and special completion for data parallel
            self._update_dist_attr_for_dp()

            # print_program_with_dist_attr(self._dist_context.serial_main_program,
            #                              self._dist_context)
792

793
        # NOTE:[HighOrderGrad] update vars and ops distributed attribute in high order gradient
794
        self._complete_high_order_grad_annotation(serial_main_program)
795

796 797 798 799 800
        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()

        self._dist_context.validate_dist_attr_for_program()

801 802 803 804
        end_time = time.time()
        # print("end time", end_time, flush=True)
        # print("elapsed time", end_time - start_time, flush=True)

805 806
        return serial_main_program

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
    def _update_dist_attr_for_dp(self):
        # TODO: we must ensure the world process group contains all ranks
        ranks = get_world_process_group().ranks
        process_mesh = ProcessMesh(ranks)
        for dist_tensor in self._dist_context._dist_tensors_for_program.values(
        ):
            serial_tensor = dist_tensor.serial_tensor
            tensor_dist_attr = dist_tensor.dist_attr
            tensor_dist_attr.process_mesh = process_mesh

        for dist_op in self._dist_context._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            op_desc = serial_op.desc
            op_dist_attr = dist_op.dist_attr
            op_dist_attr.process_mesh = process_mesh
            original_op_dist_attr = copy.deepcopy(op_dist_attr)
            input_xshape_arg_names = []
            if "XShape" in op_desc.input_names():
                input_xshape_arg_names = op_desc.input("XShape")
            for arg_name in serial_op.input_arg_names:
                serial_tensor = dist_op.get_serial_input(arg_name)
                if not serial_tensor.is_parameter:
                    if arg_name not in input_xshape_arg_names:
                        old_dims_mapping = op_dist_attr.get_input_dims_mapping(
                            arg_name)
                        if len(old_dims_mapping) > 0:
                            new_dims_mapping = [0] + [
                                -1 for _ in range(len(old_dims_mapping) - 1)
                            ]
                            op_dist_attr.set_input_dims_mapping(
                                arg_name, new_dims_mapping)
                    else:
                        old_dims_mapping = op_dist_attr.get_input_dims_mapping(
                            arg_name)
                        if len(old_dims_mapping) > 1:
                            new_dims_mapping = [-1, 0] + [
                                -1 for _ in range(len(old_dims_mapping) - 2)
                            ]
                            op_dist_attr.set_input_dims_mapping(
                                arg_name, new_dims_mapping)
                # Set tensor's dims_mapping by the op's
                tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                    serial_tensor)
                tensor_dist_attr.dims_mapping = op_dist_attr.get_input_dims_mapping(
                    arg_name)
            output_xshape_arg_names = []
            if "XShape" in op_desc.output_names():
                output_xshape_arg_names = op_desc.output("XShape")
            for arg_name in serial_op.output_arg_names:
                serial_tensor = dist_op.get_serial_output(arg_name)
                if not serial_tensor.is_parameter:
                    if arg_name not in output_xshape_arg_names:
                        old_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            arg_name)
                        if len(old_dims_mapping) > 0:
                            new_dims_mapping = [0] + [
                                -1 for _ in range(len(old_dims_mapping) - 1)
                            ]
                            op_dist_attr.set_output_dims_mapping(
                                arg_name, new_dims_mapping)
                    else:
                        old_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            arg_name)
                        if len(old_dims_mapping) > 1:
                            new_dims_mapping = [-1, 0] + [
                                -1 for _ in range(len(old_dims_mapping) - 2)
                            ]
                            op_dist_attr.set_output_dims_mapping(
                                arg_name, new_dims_mapping)
                # Set tensor's dims_mapping by the op's
                tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                    serial_tensor)
                tensor_dist_attr.dims_mapping = op_dist_attr.get_output_dims_mapping(
                    arg_name)

            op_dist_impls = find_compatible_distributed_operator_impls(
                dist_op, partial=False)
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                for op_dist_impl in op_dist_impls:
                    op_dist_impl.update_dims_mapping(dist_op)
                    if op_dist_impl.is_auto_compatible(dist_op) \
                        and dist_op.validate_dist_attr():
                        op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
                    else:
                        dist_op.dist_attr = backup_op_dist_attr
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
            else:
                dist_op.dist_attr = original_op_dist_attr

902
    def _complete_high_order_grad_annotation(self, serial_main_program=None):
903 904 905 906 907 908
        """
        NOTE: 
            [HighOrderGrad] Complete the annotation of vars and ops only for high order gradient.
            This function is temporary to support high order gradient, and will be removed in the future.
        """

909 910 911 912 913
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context._serial_main_program = serial_main_program

914 915 916 917 918 919 920
        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_op_by_id(ops, id):
            for op in ops:
921
                if op.desc.original_id() == id:
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
                    return op
            return None

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
        grad_var_to_var = dist_op_context.grad_var_to_var

        appended_grad_times = 0
        for idx in range(0, len(ops)):
            op = ops[idx]
            if int(op.attr('op_role')) == int(
                    core.op_proto_and_checker_maker.OpRole.Forward):
                continue

            if int(op.attr('op_role')) == int(
                    core.op_proto_and_checker_maker.OpRole.Backward) and int(
                        ops[idx - 1].attr('op_role')) == int(
                            core.op_proto_and_checker_maker.OpRole.Forward):
                appended_grad_times += 1

943 944 945 946 947 948
            if int(op.attr('op_role')) == int(
                    int(core.op_proto_and_checker_maker.OpRole.Backward)
                    | int(core.op_proto_and_checker_maker.OpRole.Loss)):
                assert op.type == "fill_constant"
                break

949 950 951
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
952 953
            if grad_op.desc.original_id(
            ) in dist_op_context.grad_op_id_to_op_id:
954
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
955 956 957
                forward_op = _get_op_by_id(
                    ops, dist_op_context.grad_op_id_to_op_id[
                        grad_op.desc.original_id()])
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
                assert forward_op is not None

                fwd_op_dist_attr = self._dist_context.get_op_dist_attr_for_program(
                    forward_op)
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
                grad_op_dist_attr = OperatorDistributedAttribute()
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh

                for input_name in grad_op.input_arg_names:
                    if input_name not in forward_op.input_arg_names and input_name not in forward_op.output_arg_names:
                        if input_name in grad_var_to_var[appended_grad_times]:
                            fwd_name = grad_var_to_var[appended_grad_times][
                                input_name]
                            ref_dims_mapping = fwd_op_dist_attr.get_output_dims_mapping(
                                fwd_name)
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                                input_var).dims_mapping
                    else:
                        if fwd_op_dist_attr.get_input_dims_mapping(input_name):
                            ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
                                input_name)
                        else:
                            ref_dims_mapping = fwd_op_dist_attr.get_output_dims_mapping(
                                input_name)
                    assert ref_dims_mapping is not None, "[{}] 's dims mapping is NONE".format(
                        input_name)
986 987
                    grad_op_dist_attr.set_input_dims_mapping(
                        input_name, ref_dims_mapping)
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var[appended_grad_times]
                    fwd_name = grad_var_to_var[appended_grad_times][output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
                        fwd_name)
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
1002 1003
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_name, ref_dims_mapping)
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)

            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
            else:

                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
                    assert output_name in grad_var_to_var[appended_grad_times], \
                        "sum op's output '{}' has no corresponding var".format(
                        output_name)
                    ref_fwd_var_name = grad_var_to_var[appended_grad_times][
                        output_name]
                    ref_fwd_var = vars[ref_fwd_var_name]
                    ref_fwd_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        ref_fwd_var)
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
                            var_name, ref_fwd_dims_mapping)
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_name, ref_fwd_dims_mapping)

                elif grad_op.type == 'fill_zeros_like':
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
                    ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        ref_var)
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1058 1059 1060 1061
                    grad_op_dist_attr.set_input_dims_mapping(
                        ref_var_name, ref_dims_mapping)
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_var_name, ref_dims_mapping)
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

                elif grad_op.type in ['shape', 'fill_constant']:
                    continue

                else:
                    raise ValueError("got unexpect op [{}]".format(
                        str(grad_op.type)))

                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)

1073
    def complete_backward_annotation(self, serial_main_program=None):
1074
        """Complete the annotation of vars and ops in the backward phase for parallel program."""
1075

1076 1077 1078
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
1079
            self._dist_context._serial_main_program = serial_main_program
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_forward_varname_from_grad_varname(grad_var_name):
            assert _is_grad_var_name(
                grad_var_name), "[{}] is not a grad varnme.".format(
                    grad_var_name)
            return grad_var_name[:grad_var_name.find("@GRAD")]

        def _get_op_by_id(ops, id):
            for op in ops:
1094
                if op.desc.original_id() == id:
1095 1096 1097 1098 1099 1100
                    return op
            return None

        first_backward_op_idx = -1
        for idx, op in enumerate(serial_main_program.global_block().ops):
            if int(op.attr('op_role')) == int(
1101 1102
                    int(core.op_proto_and_checker_maker.OpRole.Backward)
                    | int(core.op_proto_and_checker_maker.OpRole.Loss)):
1103 1104 1105 1106 1107 1108 1109 1110 1111
                assert op.type == "fill_constant"
                first_backward_op_idx = idx
                break

        assert first_backward_op_idx >= 0, "No backward procedure found in this program."

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
1112 1113
        grad_var_to_var = dist_op_context.grad_var_to_var[len(
            dist_op_context.grad_var_to_var)]
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

        for idx in range(first_backward_op_idx, len(ops)):

            # complete the initial grad loss op
            if idx == first_backward_op_idx:
                assert ops[idx].type == "fill_constant"
                assert len(
                    ops[idx].input_arg_names
                ) == 0, "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].input_arg_names))
                assert len(
                    ops[idx].output_arg_names
                ) == 1, "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].output_arg_names))

                grad_var = vars[ops[idx].output_arg_names[0]]
                forward_var_name = _get_forward_varname_from_grad_varname(
                    grad_var.name)
                forward_var = vars[forward_var_name]

                # TODO complete other attribte for grad var
                tensor_dist_attr = TensorDistributedAttribute()
                process_mesh = self._dist_context.get_tensor_dist_attr_for_program(
                    forward_var).process_mesh
                dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                    forward_var).dims_mapping
                tensor_dist_attr.dims_mapping = dims_mapping
                tensor_dist_attr.process_mesh = process_mesh
                self._dist_context.set_tensor_dist_attr_for_program(
                    grad_var, tensor_dist_attr)
1144

1145 1146 1147 1148
                op_dist_attr = OperatorDistributedAttribute()
                op_dist_attr.process_mesh = process_mesh
                op_dist_attr.set_output_dims_mapping(grad_var.name,
                                                     dims_mapping)
1149 1150
                self._dist_context.set_op_dist_attr_for_program(
                    ops[idx], op_dist_attr)
1151
                continue
1152

1153 1154 1155
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
1156 1157
            if grad_op.desc.original_id(
            ) in dist_op_context.grad_op_id_to_op_id:
1158
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
1159 1160 1161 1162
                forward_op = _get_op_by_id(
                    ops[:first_backward_op_idx],
                    dist_op_context.grad_op_id_to_op_id[
                        grad_op.desc.original_id()])
1163 1164
                assert forward_op is not None

J
JZ-LIANG 已提交
1165
                if grad_op.type == "concat" and forward_op.type == "split":
Z
zhaoyingli 已提交
1166
                    forward_op_dist_attr = self._dist_context.get_op_dist_attr_for_program(
J
JZ-LIANG 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
                        forward_op)
                    output_var = vars[grad_op.desc.output('Out')[0]]
                    split_input_var_name = forward_op.input("X")[0]
                    ref_dims_mapping = forward_op_dist_attr.get_input_dims_mapping(
                        split_input_var_name)
                    ref_mesh = forward_op_dist_attr.process_mesh

                    grad_op_dist_attr = OperatorDistributedAttribute()
                    for input_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
                            input_name, ref_dims_mapping)

                    output_var_dist_attr = TensorDistributedAttribute()
                    output_var_dist_attr.dims_mapping = ref_dims_mapping
                    output_var_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1182
                    self._dist_context.set_tensor_dist_attr_for_program(
J
JZ-LIANG 已提交
1183 1184
                        output_var, output_var_dist_attr)

1185 1186
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_var.name, ref_dims_mapping)
J
JZ-LIANG 已提交
1187
                    grad_op_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1188 1189
                    self._dist_context.set_op_dist_attr_for_program(
                        grad_op, grad_op_dist_attr)
1190 1191 1192
                    grad_op_dist_attr.impl_type = fwd_op_dist_attr.impl_type
                    grad_op_dist_attr.impl_idx = fwd_op_dist_attr.impl_idx

J
JZ-LIANG 已提交
1193 1194
                    continue

1195
                fwd_op_dist_attr = self._dist_context.get_op_dist_attr_for_program(
1196
                    forward_op)
1197
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
1198
                grad_op_dist_attr = OperatorDistributedAttribute()
1199
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh
1200 1201

                for input_name in grad_op.input_arg_names:
1202 1203 1204 1205 1206 1207 1208 1209 1210
                    if input_name not in forward_op.input_arg_names and input_name not in forward_op.output_arg_names:
                        if input_name in grad_var_to_var:
                            fwd_name = grad_var_to_var[input_name]
                            ref_dims_mapping = fwd_op_dist_attr.get_output_dims_mapping(
                                fwd_name)
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                                input_var).dims_mapping
1211
                    else:
1212 1213
                        if fwd_op_dist_attr.get_input_dims_mapping(input_name):
                            ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
1214 1215
                                input_name)
                        else:
1216
                            ref_dims_mapping = fwd_op_dist_attr.get_output_dims_mapping(
1217 1218
                                input_name)
                    assert ref_dims_mapping is not None, "[{}] 's dims mapping is NONE".format(
1219
                        input_name)
1220 1221
                    grad_op_dist_attr.set_input_dims_mapping(
                        input_name, ref_dims_mapping)
1222

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var
                    fwd_name = grad_var_to_var[output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
                        fwd_name)
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
1236 1237
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_name, ref_dims_mapping)
1238

1239 1240
                grad_op_dist_attr.impl_type = fwd_op_dist_attr.impl_type
                grad_op_dist_attr.impl_idx = fwd_op_dist_attr.impl_idx
1241 1242
                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)
1243

1244
            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
1245
            else:
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
                    assert output_name in grad_var_to_var, "sum op's output '{}' has no corresponding var".format(
                        output_name)
                    ref_fwd_var_name = grad_var_to_var[output_name]
                    ref_fwd_var = vars[ref_fwd_var_name]
                    ref_fwd_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        ref_fwd_var)
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh

                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
1265

1266 1267 1268 1269 1270 1271 1272 1273
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
                            var_name, ref_fwd_dims_mapping)
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_name, ref_fwd_dims_mapping)
1274 1275
                    grad_op_dist_attr.impl_type = "default"
                    grad_op_dist_attr.impl_idx = 0
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

                elif grad_op.type == 'fill_zeros_like':
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
                    ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        ref_var)
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1295 1296 1297 1298
                    grad_op_dist_attr.set_input_dims_mapping(
                        ref_var_name, ref_dims_mapping)
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_var_name, ref_dims_mapping)
1299 1300 1301 1302

                else:
                    raise ValueError("got unexpect op [{}]".format(
                        str(grad_op.type)))
1303 1304 1305 1306

                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)

1307
    def complete_update_annotation(self, serial_main_program):
1308
        """Complete the annotation of vars and ops in the update phase for parallel program."""
1309 1310 1311 1312
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
        from paddle.distributed.auto_parallel.process_group import get_world_process_group
        world_ranks = get_world_process_group().ranks
1313 1314

        # Notice: serial_main_program is actually a dist_main_program of current rank,
1315
        # and must be passed into this function.
1316 1317
        # TODO: We should fix this behavior.

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        learning_rate_completed = False

        for idx in range(len(ops)):

            # complete the annotation of the optimizer op.
            # TODO to add attribute for moment var
            op = ops[idx]
            if int(op.attr('op_role')) == int(OpRole.Optimize):
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
                # TODO:
                # 1. move `generate_optimizer` before `partitioner`
                # 2. implement grad_clip completion by `dist_op`
                # 3. allreduce dist_gloabl_norm (mp-group) and no_dist_global_norm (pp-group, sharding-group)
                if _is_gradient_clip_op(op):
                    if op.type in [
                            "sum", "sqrt", "fill_constant", "elementwise_max",
                            "elementwise_div"
                    ]:
                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = world_ranks
                        for in_name in op.input_arg_names:
                            in_var = vars[in_name]
                            in_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                                in_var)
                            op_dist_attr.set_input_dist_attr(
                                in_name, in_dist_attr)
                        for out_name in op.output_arg_names:
                            out_var = vars[out_name]
                            out_dist_attr = TensorDistributedAttribute()
                            out_dist_attr.process_mesh = world_ranks
                            out_dist_attr.dims_mapping = [
                                -1 for _ in range(len(out_var.shape))
                            ]
                            self._dist_context.set_tensor_dist_attr_for_program(
                                out_var, out_dist_attr)
                            op_dist_attr.set_output_dist_attr(
                                out_name, out_dist_attr)
                        remove_no_need_in_op(op, self._dist_context)
                    else:
                        in_var = vars[op.input("X")[0]]
                        in_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                            in_var)
                        assert in_dist_attr is not None
                        ref_process_mesh = in_dist_attr.process_mesh
                        ref_dims_mapping = in_dist_attr.dims_mapping

                        if op.type == "cast" and ops[
                                idx + 1].type == "elementwise_mul":
                            ref_var = vars[ops[idx + 1].input("X")[0]]
                            ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                                ref_var)
                            assert ref_dist_attr is not None
                            ref_process_mesh = ref_dist_attr.process_mesh

                        out_var = vars[op.output("Out")[0]]
                        out_dist_attr = TensorDistributedAttribute()
                        out_dist_attr.process_mesh = ref_process_mesh
                        if out_var.shape == in_var.shape:
                            out_dist_attr.dims_mapping = ref_dims_mapping
                        else:
                            assert len(
                                out_var.shape) == 1 and out_var.shape[0] == 1
                            out_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
                            out_var, out_dist_attr)

                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = ref_process_mesh
                        op_dist_attr.set_input_dist_attr(
                            in_var.name, in_dist_attr)
                        op_dist_attr.set_output_dist_attr(
                            out_var.name, out_dist_attr)
Z
zhaoyingli 已提交
1391 1392 1393

                    self._dist_context.set_op_dist_attr_for_program(
                        op, op_dist_attr)
1394 1395

                if "Grad" in op.input_names and "Param" in ops[idx].input_names:
1396 1397 1398 1399
                    assert len(
                        op.input("Param")) == 1, "Only support one-to-one now."
                    assert len(
                        op.input("Grad")) == 1, "Only support one-to-one now."
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
                    param = vars[op.input("Param")[0]]
                    grad_var = vars[op.input("Grad")[0]]

                    param_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        param)
                    assert param_dist_attr is not None
                    ref_process_mesh = self._dist_context.get_tensor_dist_attr_for_program(
                        param).process_mesh
                    assert ref_process_mesh is not None
                    ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                        param).dims_mapping
                    assert ref_dims_mapping is not None
                    op_dist_attr = OperatorDistributedAttribute()
                    op_dist_attr.process_mesh = ref_process_mesh
                    op_dist_attr.set_input_dims_mapping(grad_var.name,
                                                        ref_dims_mapping)
                    op_dist_attr.set_input_dims_mapping(param.name,
                                                        ref_dims_mapping)
1418 1419
                    op_dist_attr.set_output_dims_mapping(
                        param.name, ref_dims_mapping)
1420 1421
                    learning_var = vars[op.input("LearningRate")[0]]
                    op_dist_attr.set_input_dims_mapping(learning_var.name, [-1])
1422 1423
                    op_dist_attr.set_output_dims_mapping(
                        learning_var.name, [-1])
1424 1425 1426 1427

                    if not learning_rate_completed:
                        learning_rate_completed = True
                        var_dist_attr = TensorDistributedAttribute()
1428
                        var_dist_attr.process_mesh = world_ranks
1429 1430 1431 1432 1433 1434 1435
                        var_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
                            learning_var, var_dist_attr)

                    for input_name in op.desc.input_names():

                        if input_name in [
1436 1437 1438 1439 1440 1441 1442
                                'Param',
                                'Grad',
                                'LearningRate',
                                "SkipUpdate",
                                "Beta1Tensor",
                                "Beta2Tensor",
                                "EpsilonTensor",
1443 1444
                        ]:
                            continue
1445 1446
                        if len(op.desc.input(input_name)) == 0:
                            continue
1447 1448 1449 1450 1451 1452 1453

                        assert len(op.desc.input(input_name)) == 1
                        input_var = vars[op.desc.input(input_name)[0]]
                        input_var_attr = TensorDistributedAttribute()

                        if "Beta1Pow" in input_name or "Beta2Pow" in input_name:
                            input_var_attr.dims_mapping = [-1]
1454 1455 1456 1457
                            op_dist_attr.set_input_dims_mapping(
                                input_var.name, [-1])
                            op_dist_attr.set_output_dims_mapping(
                                input_var.name, [-1])
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
                        else:
                            input_var_attr.dims_mapping = ref_dims_mapping
                            op_dist_attr.set_input_dims_mapping(
                                input_var.name, ref_dims_mapping)
                            op_dist_attr.set_output_dims_mapping(
                                input_var.name, ref_dims_mapping)

                        input_var_attr.process_mesh = ref_process_mesh
                        self._dist_context.set_tensor_dist_attr_for_program(
                            input_var, input_var_attr)

                    self._dist_context.set_op_dist_attr_for_program(
                        op, op_dist_attr)
                    continue
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

    def complete_prim_annotation(self, serial_main_program=None):
        """
        fill default data parallel annotation for program with primitive operators.

        Arguments:
            serial_main_program: partial annotated serial_main_program.
        Returns:
            serial_main_program: completed annotated serial_main_program.
        """
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
Z
zhaoyingli 已提交
1485
            self._dist_context._serial_main_program = serial_main_program
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

        import time

        start_time = time.time()
        self._dist_context._is_initialized = True

        start_time = time.time()
        self._dist_context._init_dist_attr_for_program()

        start_time = time.time()
        self._init_global_mesh_for_program()

        # Do the validation check and amend some completion
        start_time = time.time()
        self._dist_context.amend_dist_attr_for_program()
        self._dist_context.validate_dist_attr_for_program()

    def _init_global_mesh_for_program(self):
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
        from paddle.distributed.auto_parallel.process_group import get_world_process_group
        world_ranks = get_world_process_group().ranks

        for block in self._dist_context._serial_main_program.blocks:
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                dist_tensor = self._dist_context.get_dist_tensor_for_program(
                    tensor)
                assert dist_tensor is not None
                dist_tensor.dist_attr.process_mesh = world_ranks
            for op in block.ops:
                # Copy the distributed operators in the default context
                dist_op = self._dist_context.get_dist_op_for_program(op)
                assert dist_op is not None
                dist_op.dist_attr.process_mesh = world_ranks

                # Find the most compatible implemenetations from the distributed operator
1523
                op_dist_impls = find_compatible_distributed_operator_impls(
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
                    dist_op, fwd=True)
                if op_dist_impls is not None:
                    backup_op_dist_attr = copy.deepcopy(dist_op.dist_attr)
                    for op_dist_impl in op_dist_impls:
                        dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                        if op_dist_impl.is_auto_compatible(dist_op):
                            if op_dist_impl.type == "elementwise":
                                dist_op.dist_attr.impl_type = "default"
                            else:
                                dist_op.dist_attr.impl_type = op_dist_impl.type
                            # op_dist_attr.impl_type = op_dist_impl.type
                            dist_op.dist_attr.impl_idx = op_dist_impl.idx
                            break
                        else:
                            dist_op.dist_attr = backup_op_dist_attr
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555


def remove_no_need_in_op(op, dist_context):
    if op.type == "fill_constant":
        return

    filter_vars = []
    main_block = op.block
    rank_id = dist_context.dist_op_context.rank_id
    for varname in op.input("X"):
        if rank_id in dist_context.get_tensor_dist_attr_for_program(
                main_block.var(varname)).process_mesh.processes:
            filter_vars.append(varname)

    if not filter_vars:
        return
    op.desc.set_input('X', filter_vars)