multiclass_nms_op.cc 6.8 KB
Newer Older
Z
zlsh80826 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <vector>
13

Z
zlsh80826 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

namespace paddle {
namespace inference {
namespace tensorrt {

class MultiClassNMSOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
32 33
                  const framework::Scope& scope,
                  bool test_mode) override {
Z
zlsh80826 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46
    VLOG(3) << "convert a fluid multiclassNMS op to tensorrt plugin";

    // for now, only work for static shape and regular tensor
    framework::OpDesc op_desc(op, nullptr);

    std::string bboxes = op_desc.Input("BBoxes").front();
    std::string scores = op_desc.Input("Scores").front();
    std::string output_name = op_desc.Output("Out").front();

    auto* bboxes_tensor = engine_->GetITensor(bboxes);
    auto* scores_tensor = engine_->GetITensor(scores);

    int background_label =
R
Ruibiao Chen 已提交
47
        PADDLE_GET_CONST(int, op_desc.GetAttr("background_label"));
Z
zlsh80826 已提交
48
    float score_threshold =
R
Ruibiao Chen 已提交
49 50
        PADDLE_GET_CONST(float, op_desc.GetAttr("score_threshold"));
    int nms_top_k = PADDLE_GET_CONST(int, op_desc.GetAttr("nms_top_k"));
Z
zlsh80826 已提交
51
    float nms_threshold =
R
Ruibiao Chen 已提交
52 53 54
        PADDLE_GET_CONST(float, op_desc.GetAttr("nms_threshold"));
    int keep_top_k = PADDLE_GET_CONST(int, op_desc.GetAttr("keep_top_k"));
    bool normalized = PADDLE_GET_CONST(bool, op_desc.GetAttr("normalized"));
55 56
    int class_index = engine_->with_dynamic_shape() ? 1 : 0;
    int num_classes = scores_tensor->getDimensions().d[class_index];
Z
zlsh80826 已提交
57 58

    auto bboxes_dims = bboxes_tensor->getDimensions();
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    nvinfer1::IShuffleLayer* bboxes_expand_layer = nullptr;
    nvinfer1::IShuffleLayer* scores_transpose_layer = nullptr;
    if (engine_->with_dynamic_shape()) {
      nvinfer1::Dims4 bboxes_expand_dims(
          bboxes_dims.d[0], bboxes_dims.d[1], 1, bboxes_dims.d[2]);
      bboxes_expand_layer =
          TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *bboxes_tensor);
      bboxes_expand_layer->setReshapeDimensions(bboxes_expand_dims);

      nvinfer1::Permutation permutation{0, 2, 1};
      scores_transpose_layer =
          TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *scores_tensor);
      scores_transpose_layer->setFirstTranspose(permutation);
    } else {
      nvinfer1::Dims3 bboxes_expand_dims(bboxes_dims.d[0], 1, bboxes_dims.d[1]);
      bboxes_expand_layer =
          TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *bboxes_tensor);
      bboxes_expand_layer->setReshapeDimensions(bboxes_expand_dims);

      nvinfer1::Permutation permutation{1, 0};
      scores_transpose_layer =
          TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *scores_tensor);
      scores_transpose_layer->setFirstTranspose(permutation);
    }
Z
zlsh80826 已提交
83 84 85 86 87 88 89 90 91 92

    std::vector<nvinfer1::ITensor*> batch_nms_inputs;
    batch_nms_inputs.push_back(bboxes_expand_layer->getOutput(0));
    batch_nms_inputs.push_back(scores_transpose_layer->getOutput(0));

    constexpr bool shareLocation = true;
    constexpr bool clip_boxes = false;

    const std::vector<nvinfer1::PluginField> fields{
        {"shareLocation", &shareLocation, nvinfer1::PluginFieldType::kINT32, 1},
93 94 95 96
        {"backgroundLabelId",
         &background_label,
         nvinfer1::PluginFieldType::kINT32,
         1},
Z
zlsh80826 已提交
97 98 99
        {"numClasses", &num_classes, nvinfer1::PluginFieldType::kINT32, 1},
        {"topK", &nms_top_k, nvinfer1::PluginFieldType::kINT32, 1},
        {"keepTopK", &keep_top_k, nvinfer1::PluginFieldType::kINT32, 1},
100 101 102 103 104 105 106
        {"scoreThreshold",
         &score_threshold,
         nvinfer1::PluginFieldType::kFLOAT32,
         1},
        {"iouThreshold",
         &nms_threshold,
         nvinfer1::PluginFieldType::kFLOAT32,
Z
zlsh80826 已提交
107 108 109 110 111 112 113 114 115 116 117 118
         1},
        {"isNormalized", &normalized, nvinfer1::PluginFieldType::kINT32, 1},
        {"clipBoxes", &clip_boxes, nvinfer1::PluginFieldType::kINT32, 1},
    };

    nvinfer1::PluginFieldCollection* plugin_collections =
        static_cast<nvinfer1::PluginFieldCollection*>(
            malloc(sizeof(*plugin_collections) +
                   fields.size() * sizeof(nvinfer1::PluginField)));
    plugin_collections->nbFields = static_cast<int>(fields.size());
    plugin_collections->fields = fields.data();

119 120 121 122 123 124
    std::string nms_plugin_name = "BatchedNMS_TRT";
    if (engine_->with_dynamic_shape()) {
      nms_plugin_name = "BatchedNMSDynamic_TRT";
    }
    auto creator =
        GetPluginRegistry()->getPluginCreator(nms_plugin_name.c_str(), "1");
Z
zlsh80826 已提交
125
    auto batch_nms_plugin =
126
        creator->createPlugin(nms_plugin_name.c_str(), plugin_collections);
Z
zlsh80826 已提交
127 128 129 130 131 132 133 134 135 136 137 138
    free(plugin_collections);

    auto batch_nms_layer = engine_->network()->addPluginV2(
        batch_nms_inputs.data(), batch_nms_inputs.size(), *batch_nms_plugin);
    auto nmsed_boxes = batch_nms_layer->getOutput(1);
    auto nmsed_scores = batch_nms_layer->getOutput(2);
    auto nmsed_classes = batch_nms_layer->getOutput(3);

    auto nmsed_scores_transpose_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *nmsed_scores);
    auto nmsed_classes_reshape_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *nmsed_classes);
139 140 141 142 143 144 145 146 147 148 149 150 151
    if (engine_->with_dynamic_shape()) {
      nmsed_scores_transpose_layer->setReshapeDimensions(
          nvinfer1::Dims3(bboxes_dims.d[0], keep_top_k, 1));

      nmsed_classes_reshape_layer->setReshapeDimensions(
          nvinfer1::Dims3(bboxes_dims.d[0], keep_top_k, 1));
    } else {
      nmsed_scores_transpose_layer->setReshapeDimensions(
          nvinfer1::Dims2(keep_top_k, 1));

      nmsed_classes_reshape_layer->setReshapeDimensions(
          nvinfer1::Dims2(keep_top_k, 1));
    }
Z
zlsh80826 已提交
152 153 154 155 156 157 158 159

    std::vector<nvinfer1::ITensor*> concat_inputs;
    concat_inputs.push_back(nmsed_classes_reshape_layer->getOutput(0));
    concat_inputs.push_back(nmsed_scores_transpose_layer->getOutput(0));
    concat_inputs.push_back(nmsed_boxes);

    auto nms_concat_layer = TRT_ENGINE_ADD_LAYER(
        engine_, Concatenation, concat_inputs.data(), concat_inputs.size());
160 161
    int axis_index = engine_->with_dynamic_shape() ? 1 : 0;
    nms_concat_layer->setAxis(axis_index + 1);
Z
zlsh80826 已提交
162

163 164
    RreplenishLayerAndOutput(
        nms_concat_layer, "multiclass_nms", {output_name}, test_mode);
Z
zlsh80826 已提交
165 166 167 168 169 170 171 172
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(multiclass_nms, MultiClassNMSOpConverter);