device_context.h 28.8 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3
Copyright (c) 2022 NVIDIA Corporation. All rights reserved.

Q
QI JUN 已提交
4 5 6 7 8 9 10 11 12 13 14
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

W
Wilber 已提交
15
#include <functional>
16
#include <future>  // NOLINT
D
dzhwinter 已提交
17
#include <memory>
Y
yuyang18 已提交
18
#include <mutex>  // NOLINT
19
#include <string>
D
dzhwinter 已提交
20
#include <unordered_map>
21
#include <utility>
22
#include <vector>
W
wanghuancoder 已提交
23

24
#include "paddle/fluid/memory/malloc.h"
W
Wilber 已提交
25
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
26
#include "paddle/phi/backends/cpu/cpu_context.h"
27
#include "paddle/phi/backends/custom/custom_context.h"
28 29
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/core/device_context.h"
30
#ifdef PADDLE_WITH_CUDA
31
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/dynload/cublas.h"
33
#include "paddle/fluid/platform/dynload/cublasLt.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
35
#include "paddle/fluid/platform/dynload/cusolver.h"
36
#include "paddle/fluid/platform/dynload/cusparse.h"
37
#include "paddle/phi/backends/gpu/gpu_context.h"
38
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
39
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
40
#endif
41
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Q
QI JUN 已提交
42
#endif
D
dzhwinter 已提交
43

44
#ifdef PADDLE_WITH_HIP
45
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"  // NOLINT
46 47
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
48
#include "paddle/phi/backends/gpu/gpu_context.h"  // NOLINT
49 50 51
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
52
#include "paddle/fluid/platform/device/gpu/gpu_info.h"  // NOLINT
53 54
#endif

55 56 57 58
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
59
#ifdef PADDLE_WITH_MKLDNN
60
#include "dnnl.hpp"  // NOLINT
61
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
62 63
#endif

64
#include <map>
W
wanghuancoder 已提交
65

66
#include "glog/logging.h"
Y
Yi Wang 已提交
67 68
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
69
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
70
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
71
#endif
72
#ifdef PADDLE_WITH_ASCEND_CL
73 74
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
75
#endif
76

77 78
#include "paddle/phi/backends/device_ext.h"
#include "paddle/phi/backends/stream.h"
79 80

#if !defined(PADDLE_WITH_XPU_KP) || defined(__xpu_on_host__)
Q
qijun 已提交
81
#include "unsupported/Eigen/CXX11/Tensor"
82
#endif
Q
QI JUN 已提交
83

W
wanghuancoder 已提交
84 85 86 87 88
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

89
#ifdef PADDLE_WITH_XPU
90 91
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
92
#include "paddle/phi/backends/xpu/xpu_context.h"
93 94
#endif

95 96
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
97
#include "paddle/fluid/platform/device/npu/npu_info.h"
98 99
#endif

Q
QI JUN 已提交
100 101 102
namespace paddle {
namespace platform {

103
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
104 105 106 107
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
108
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
109 110 111 112
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
113 114
#endif  // PADDLE_WITH_CUDA

115 116 117 118
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
119
  NPU = 3,
J
jianghaicheng 已提交
120
  IPU = 4,
F
fwenguang 已提交
121 122 123
  MLU = 5,

  MAX_DEVICE_TYPES = 6,
124 125
};

126 127
DeviceType Place2DeviceType(const platform::Place& place);

128 129 130
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
131
constexpr DeviceType kNPU = DeviceType::NPU;
J
jianghaicheng 已提交
132
constexpr DeviceType kIPU = DeviceType::IPU;
F
fwenguang 已提交
133
constexpr DeviceType kMLU = DeviceType::MLU;
134

135
using DeviceContext = phi::DeviceContext;
Q
QI JUN 已提交
136

137
// using CPUDeviceContext = phi::CPUContext;
W
Wilber 已提交
138
// TODO(wilber): The place constructor is used in many places, it is more
139 140
// difficult to use CPUDeviceContext = phi::CPUContext directly.
class CPUDeviceContext : public phi::CPUContext {
Q
qijun 已提交
141
 public:
142
  CPUDeviceContext();
Q
qijun 已提交
143
  explicit CPUDeviceContext(CPUPlace place);
Q
QI JUN 已提交
144 145
};

Y
Yang Yu 已提交
146 147 148 149 150 151 152 153
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

J
jianghaicheng 已提交
154 155 156 157 158 159 160 161
// Graphcore IPU
#ifdef PADDLE_WITH_IPU
class IPUDeviceContext : public DeviceContext {
 public:
  IPUDeviceContext() = delete;
  explicit IPUDeviceContext(IPUPlace place);
  virtual ~IPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
162
  const Place& GetPlace() const override;
J
jianghaicheng 已提交
163 164 165 166 167 168 169 170 171 172
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

 private:
  IPUPlace place_;
};
template <>
struct DefaultDeviceContextType<platform::IPUPlace> {
  using TYPE = IPUDeviceContext;
};
F
fwenguang 已提交
173
#endif
J
jianghaicheng 已提交
174

F
fwenguang 已提交
175 176 177 178 179
#ifdef PADDLE_WITH_MLU
class MLUDeviceContext;

template <>
struct DefaultDeviceContextType<platform::MLUPlace>;
J
jianghaicheng 已提交
180 181
#endif

182
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
183
namespace xpu = baidu::xpu::api;
184
class XPUDeviceContext : public phi::XPUContext {
185 186 187 188 189
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
190
  xpuStream stream() const { return XPUContext::x_context()->xpu_stream; }
191 192 193 194 195 196 197 198
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

199 200 201 202 203 204
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
205
  const Place& GetPlace() const override;
206
  aclrtContext context() const;
207

208 209 210 211 212 213
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

214 215 216 217 218 219 220
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

236 237 238
 private:
  NPUPlace place_;
  aclrtContext context_;
239 240 241 242

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
258 259 260 261 262 263 264

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

W
Wilber 已提交
265
  const Place& GetPlace() const override;
266 267 268 269 270 271 272 273 274 275 276 277 278

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

279 280 281
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
282
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
283
class EigenCudaStreamDevice;
S
sneaxiy 已提交
284

285 286 287 288 289
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
290 291
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

307 308 309 310 311 312
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

W
Wilber 已提交
313 314
  void SetStream(gpuStream_t stream);

315
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
316

317 318 319
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
320
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
321
#endif
322

323
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
324 325 326
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
327
#endif
G
Guo Sheng 已提交
328

329 330 331 332 333 334 335 336
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

Z
zhangkaihuo 已提交
337
#ifndef PADDLE_WITH_HIP
338 339 340 341 342 343
#if CUDA_VERSION >= 11060
  const std::unique_ptr<CublasLtHandleHolder>& CublasLtHandle() const {
    return cublaslt_handle_;
  }
#endif

Z
zhangkaihuo 已提交
344 345 346 347 348
  const std::unique_ptr<CusparseHandleHolder>& CusparseHandle() const {
    return cusparse_handle_;
  }
#endif

349
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
350 351
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
352
    if (cublas_tf32_tensor_core_handle_) {
W
Wilber 已提交
353
      cublas_tf32_tensor_core_handle_->Call(callback);
354
    } else {
W
Wilber 已提交
355
      cublas_handle_->Call(callback);
356
    }
357 358
  }

Z
zhangkaihuo 已提交
359
#ifndef PADDLE_WITH_HIP
360 361 362 363 364 365 366 367
#if CUDA_VERSION >= 11060
  /*! \brief  Call cublasLt function safely. */
  inline void CublasLtCall(
      const std::function<void(blasLtHandle_t)>& callback) const {
    cublaslt_handle_->Call(callback);
  }
#endif

Z
zhangkaihuo 已提交
368
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
369
  inline void CusparseCall(
370
      const std::function<void(phi::sparseHandle_t)>& callback) const {
W
Wilber 已提交
371
    cusparse_handle_->Call(callback);
Z
zhangkaihuo 已提交
372 373 374
  }
#endif

375 376 377 378 379
  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
380 381
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
382
    if (cublas_tensor_core_handle_) {
W
Wilber 已提交
383
      cublas_tensor_core_handle_->Call(callback);
384
    } else {
W
Wilber 已提交
385
      cublas_handle_->Call(callback);
386 387 388 389 390 391
    }
  }

 private:
  void InitEigenContext();

392 393 394 395 396
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
397 398 399 400 401 402 403
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
404 405 406 407 408
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
409 410
    }
  }
411
#endif
412

Z
zhangkaihuo 已提交
413
#ifndef PADDLE_WITH_HIP
414 415 416 417 418 419
#if CUDA_VERSION >= 11060
  void InitCuBlasLtContext() {
    cublaslt_handle_.reset(new CublasLtHandleHolder());
  }
#endif

Z
zhangkaihuo 已提交
420 421 422 423 424
  void InitCuSparseContext() {
    cusparse_handle_.reset(new CusparseHandleHolder(RawStream()));
  }
#endif

425 426
  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
427 428
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
429
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
430 431
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
432 433
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
434 435 436 437
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
438 439
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
440
            << ", but MIOPEN version in your machine is "
441
            << local_miopen_version / 100 << "." << local_miopen_version % 100
442 443 444 445
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
446 447
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_GPU_SUCCESS(
448 449
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
450 451 452 453 454 455 456 457 458 459 460 461 462
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
463 464
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
465
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
466
#endif
467 468 469 470 471
    } else {
      cudnn_handle_ = nullptr;
    }
  }

472
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
473
  void InitCuSolverContext() {
474 475
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
476 477
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
478
#endif
G
Guo Sheng 已提交
479

480 481
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
482
#ifdef PADDLE_WITH_HIP
483
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
484
#else
485
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
486
#endif
487 488 489 490 491 492 493
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
494
    cublas_tf32_tensor_core_handle_.reset();
495 496
  }

Z
zhangkaihuo 已提交
497
#ifndef PADDLE_WITH_HIP
498 499 500 501
#if CUDA_VERSION >= 11060
  void DestoryCuBlasLtContext() { cublaslt_handle_.reset(); }
#endif

Z
zhangkaihuo 已提交
502 503 504
  void DestoryCuSparseContext() { cusparse_handle_.reset(); }
#endif

505
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
506 507
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
508
      PADDLE_ENFORCE_GPU_SUCCESS(
G
Guo Sheng 已提交
509 510 511
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
512
#endif
G
Guo Sheng 已提交
513

514 515 516 517
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
518 519 520
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
521
  cudnnHandle_t cudnn_handle_;
522
#endif
523 524
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
525
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
526
#ifndef PADDLE_WITH_HIP
527 528 529
#if CUDA_VERSION >= 11060
  std::unique_ptr<CublasLtHandleHolder> cublaslt_handle_;
#endif
G
Guo Sheng 已提交
530
  cusolverDnHandle_t cusolver_dn_handle_;
Z
zhangkaihuo 已提交
531
  std::unique_ptr<CusparseHandleHolder> cusparse_handle_;
532
#endif
533 534 535
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

536
class CUDADeviceContext : public phi::GPUContext {
Q
QI JUN 已提交
537
 public:
D
dzhwinter 已提交
538
  explicit CUDADeviceContext(CUDAPlace place);
539
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
540

541
  /*! \brief  Wait for all operations completion in the stream. */
542
  void Wait() const override;
Q
QI JUN 已提交
543

544 545 546
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

547
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
548 549 550
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
551
      phi::GPUContext::CublasCall(callback);
W
Wilber 已提交
552 553
      return;
    }
554
    return context()->CublasCall(callback);
555 556
  }

Z
zhangkaihuo 已提交
557 558
#ifndef PADDLE_WITH_HIP
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
559
  inline void CusparseCall(
560
      const std::function<void(phi::sparseHandle_t)>& callback) const {
W
Wilber 已提交
561
    if (!thread_ctx_.count(this)) {
562
      phi::GPUContext::CusparseCall(callback);
W
Wilber 已提交
563 564 565
      return;
    }
    context()->CusparseCall(callback);
Z
zhangkaihuo 已提交
566 567 568
  }
#endif

569 570
  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
571 572 573
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
574
      phi::GPUContext::TensorCoreCublasCallIfAvailable(callback);
W
Wilber 已提交
575 576 577
      return;
    }
    context()->TensorCoreCublasCallIfAvailable(callback);
578
  }
S
sneaxiy 已提交
579

580 581 582 583
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
584
  cudnnHandle_t cudnn_handle() const;
585
#endif
586

587 588 589 590
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
591
  cublasHandle_t cublas_handle() const;
592
  cublasLtHandle_t cublaslt_handle() const;
Z
zhangkaihuo 已提交
593
  cusparseHandle_t cusparse_handle() const;
594
#endif
595

W
Wilber 已提交
596 597 598 599
#ifndef PADDLE_WITH_HIP
  cusolverDnHandle_t cusolver_dn_handle() const;
#endif

S
sneaxiy 已提交
600 601 602 603 604 605 606
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
607
  phi::DnnWorkspaceHandle cudnn_workspace_handle() const;
S
sneaxiy 已提交
608

Q
init  
qijun 已提交
609
  /*! \brief  Return cuda stream in the device context. */
610
  gpuStream_t stream() const;
Q
QI JUN 已提交
611

W
Wilber 已提交
612
  void RecordEvent(gpuEvent_t ev, const std::function<void()>& callback) const;
613

W
Wilber 已提交
614
  void AddStreamCallback(const std::function<void()>& callback) const;
615

W
Wilber 已提交
616
  void WaitStreamCallback() const;
617

618
  void ResetThreadContext(const stream::Priority& priority) {
619
    std::lock_guard<std::mutex> guard(ctx_mtx_);
W
Wilber 已提交
620
    thread_ctx_[this].reset(new CUDAContext(this->GetPlace(), priority));
621 622
  }

W
Wilber 已提交
623
  std::shared_ptr<CUDAContext> context() const;
S
sneaxiy 已提交
624

W
Wilber 已提交
625 626 627 628 629
  // Note: Can only be used under thread_local semantics.
  void SetThreadLocalStream(const gpuStream_t stream) {
    thread_ctx_.at(this)->SetStream(stream);
  }

W
Wilber 已提交
630 631 632 633
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  stream::CUDAStream* GetCudaStream() const;
  stream::CUDAStream* SetCudaStream(stream::CUDAStream*);
Q
QI JUN 已提交
634

W
Wilber 已提交
635
 private:
636 637 638 639 640 641
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
642

643 644
  mutable std::mutex cudnn_handle_mtx_;

W
Wilber 已提交
645 646 647
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  std::unique_ptr<stream::CUDAStream> cuda_stream_;
648
  std::unique_ptr<phi::DnnWorkspaceHandle> workspace_{nullptr};
Y
yuyang18 已提交
649

650
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
651
};
Q
qijun 已提交
652

653 654
class CudnnWorkspaceHandle {
 public:
655 656
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
657 658 659 660 661 662 663 664

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
665 666 667 668
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
669 670 671 672 673 674 675 676 677 678 679 680 681
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

682
  void ReallocWorkspace(size_t required_workspace_bytes);
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
699
  std::mutex* mtx_;
700 701
};

Y
Yang Yu 已提交
702 703
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
704
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
705 706
};

C
chengduoZH 已提交
707
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
708 709 710 711 712
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

W
Wilber 已提交
713
  const Place& GetPlace() const override;
C
chengduoZH 已提交
714

C
chengduoZH 已提交
715 716 717 718 719 720 721 722 723 724 725
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
726
#endif
Q
qijun 已提交
727

T
tensor-tang 已提交
728
#ifdef PADDLE_WITH_MKLDNN
729 730 731 732 733 734

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
735
    bool said_once = false;
736 737 738 739 740 741 742 743 744 745 746
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
747
    // MKL-DNN stream used for execution of primitives (per-thread)
748 749
    dnnl::engine cur_engine;
    dnnl::stream cur_stream;
J
Jacek Czaja 已提交
750 751
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
752
    void* exec_ptr_ = nullptr;
753 754

    Body();
755
    ~Body();
756 757 758 759 760 761
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
762
    void log_lib_version(void);
763 764
    const dnnl::engine& get_engine(void);
    dnnl::stream& get_stream(void);
J
Jacek Czaja 已提交
765 766 767 768
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
769 770
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
786

T
tensor-tang 已提交
787 788
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
789 790 791 792 793 794 795 796 797 798
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
799
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
800 801 802
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
803
  using ShapeBlob = umap_key_string_t<KeyBlob>;
804 805
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

806 807 808 809
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
810
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
811 812 813
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
814

T
tensor-tang 已提交
815 816 817
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
818
  const dnnl::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
819

820
  // Register object to currently used executor's map
821 822
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
823

824
  // Remove all entries from the blob map
825
  void ResetBlobMap(void* ptr);
826 827 828

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
829

830 831 832
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

833 834
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
835

836
  // Calculate number of oneDNN objects cached
837
  unsigned int GetCachedObjectsNumber(void) const;
838

839 840
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
841

842 843 844 845
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
846
 private:
847
  std::shared_ptr<BlobMap> p_blobmap_;
848 849
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
850
  std::shared_ptr<ExecShape> p_exec_items_;
851
  std::shared_ptr<std::mutex> p_mutex_;
852 853
  // 0 - clearing is allowed. x > 0 do not clear.
  unsigned int block_next_cache_clearing_ = 0;
T
tensor-tang 已提交
854 855 856
};
#endif

857
#ifdef PADDLE_WITH_CUSTOM_DEVICE
858
class CustomDeviceContext : public phi::CustomContext {
859 860 861 862 863 864 865 866 867 868 869 870 871 872
 public:
  explicit CustomDeviceContext(CustomPlace place);
  virtual ~CustomDeviceContext();

  Eigen::DefaultDevice* eigen_device() const { return nullptr; }

  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

 private:
873
  std::shared_ptr<phi::stream::Stream> stream_;
874 875 876 877 878 879 880 881 882 883 884 885
};
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = CustomDeviceContext;
};
#else
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = DeviceContext;
};
#endif

D
dzhwinter 已提交
886 887 888 889 890
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
891
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
892 893 894
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
895 896 897 898
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
899
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
900 901 902 903 904 905
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

906 907
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
908
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
909
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
910

Y
Yang Yu 已提交
911 912 913 914 915 916 917
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

918
  size_t size() const;
919

920
  const std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>&
921 922 923 924 925
  device_contexts() const;

  static void SetDeviceContexts(
      const std::map<Place,
                     std::shared_future<std::unique_ptr<DeviceContext>>>*);
926

D
dzhwinter 已提交
927 928
 private:
  static DeviceContextPool* pool;
929 930
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
931 932 933
  static thread_local const std::map<
      Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
      external_device_contexts_;  // not owned
D
dzhwinter 已提交
934 935 936
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
937 938
}  // namespace platform
}  // namespace paddle