pipeline_parallel.py 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import time
import copy
import os

from types import MethodType

from numpy import prod

import paddle
import paddle.fluid as fluid
from .meta_parallel_base import MetaParallelBase
25
from .pp_utils.utils import get_tensor_bytes, is_float_tensor
26 27
from .pp_utils import utils
from .parallel_layers.pp_layers import PipelineLayer
28 29
from ..utils.hybrid_parallel_util import *
from ..utils.log_util import logger
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45


class PipelineParallel(MetaParallelBase):
    def __init__(self, layers, hcg, strategy):
        super(PipelineParallel, self).__init__(layers, hcg, strategy)

        self.use_pipe_parallel = self._hcg.get_pipe_parallel_world_size() > 1
        self.use_data_parallel = self._hcg.get_data_parallel_world_size() > 1
        self.use_model_parallel = self._hcg.get_model_parallel_world_size() > 1

        self.num_caches = 0
        self.caches = {
            'inputs': [],
            'labels': [],
            'outputs': [],
        }
46

47 48 49 50 51 52 53 54
        self.recv_cache = None
        self.grad_tensors = None

        self.send_meta = True

        self.current_loss = paddle.to_tensor(0.0)
        self.total_loss = None

55 56
        self.use_amp = self._strategy.amp
        self.init_loss_scaling = self._strategy.amp_configs['init_loss_scaling']
57 58 59 60 61 62 63 64 65
        self.micro_batch_size = self._strategy.pipeline_configs[
            'micro_batch_size']
        self.accumulate_steps = self._strategy.pipeline_configs[
            'accumulate_steps']

        self.num_stages = self._hcg.get_pipe_parallel_world_size()
        self.stage_id = self._hcg.get_stage_id()
        self.prev_stage_id = self.stage_id - 1
        self.next_stage_id = self.stage_id + 1
66 67 68 69 70 71 72 73 74 75 76
        self.pp_group = self._hcg.get_pipe_parallel_group()
        logger.info("Pipeline Info -- num_stages: {}, stage_id: {}".format(
            self.num_stages, self.stage_id))

        if self.use_model_parallel:
            logger.info("start broadcast mp parameters")
            broadcast_mp_parameters(self._layers, self._hcg)

        if self.use_data_parallel:
            logger.info("start broadcast mp parameters")
            broadcast_dp_parameters(self._layers, self._hcg)
77 78 79 80 81 82 83 84 85 86

    def _allocate_caches(self, num_caches):
        if self.num_caches >= num_caches:
            return

        num = num_caches - self.num_caches
        self.num_caches = num_caches
        for key in self.caches:
            self.caches[key].extend([None] * num)

87
    def train_batch(self, data, optimizer):
88 89 90 91 92
        self.optimizer = optimizer
        assert fluid.framework._dygraph_tracer()._has_grad, (
            'Please enable the generation of gradients.')

        if self.stage_id == 0 or self.stage_id == self.num_stages - 1:
93
            assert data, (
94 95
                "For the first and the last stage, the data_iter must be set.")
        else:
96
            assert data is None, (
97 98
                "For pipe stages other than the first and the last one, "
                "the data_iter must be None.")
99
        self.data = data
100 101 102 103 104 105 106 107 108
        self._layers.train()
        self.total_loss = None

        minibatch_cmds = utils.TrainGenerator(self.accumulate_steps,
                                              self.num_stages, self.stage_id)
        self._train(minibatch_cmds)
        return self.total_loss

    def _train(self, minibatch_cmds):
109 110 111 112 113
        self._allocate_caches(self.accumulate_steps)
        for micro_cmds in minibatch_cmds:
            for cmd in micro_cmds:
                assert type(cmd) in self._COMMAND_MAP, "unknow cmd: {}".format(
                    type(cmd))
114 115 116 117
                self._apply_cmd = MethodType(self._COMMAND_MAP[type(cmd)], self)
                self._apply_cmd(**cmd.kwargs)

    def _allreduce_grads(self):
118 119
        if not self.use_data_parallel: return
        fused_allreduce_gradients(list(self._layers.parameters()), self._hcg)
120 121

    def _forward(self, cache_id):
122 123 124 125 126
        # load data
        self._load_micro_batch(cache_id)
        if self.stage_id != 0:
            self._recv_activations(cache_id)

127
        if isinstance(self.caches['inputs'][cache_id], tuple):
L
lilong12 已提交
128
            inputs = tuple(t for t in self.caches['inputs'][cache_id])
129
        else:
L
lilong12 已提交
130
            inputs = self.caches['inputs'][cache_id]
131 132 133 134 135

        self._clear_grads(inputs)
        outputs = self._layers.forward(inputs)
        self.caches['outputs'][cache_id] = outputs

136 137 138 139 140
        if self.stage_id == self.num_stages - 1:
            if self._layers._loss_fn is not None:
                labels = self.caches['labels'][cache_id]
                outputs = self._layers._loss_fn(outputs, labels)

141 142 143 144 145 146 147 148 149 150 151 152 153
        if self.stage_id == self.num_stages - 1:
            self.current_loss = outputs
            if isinstance(self.current_loss, paddle.Tensor):
                if self.total_loss is None:
                    self.total_loss = paddle.zeros_like(self.current_loss)
                self.total_loss += self.current_loss.detach()
            else:
                if self.total_loss is None:
                    self.total_loss = [
                        paddle.zeros_like(v) for v in self.current_loss
                    ]
                for idx, v in enumerate(self.current_loss):
                    self.total_loss[idx] += v.detach()
154 155 156 157 158 159 160 161
            if self.use_data_parallel:
                self.current_loss = self.current_loss / self._hcg.get_data_parallel_world_size(
                )
            if self.accumulate_steps > 1:
                self.current_loss = self.current_loss / self.accumulate_steps
            self.caches['outputs'][cache_id] = self.current_loss.clone()
        else:
            self._send_activations(cache_id)
162 163 164 165

    def _backward(self, cache_id):
        assert self.optimizer is not None
        if self.stage_id == self.num_stages - 1:
166 167
            paddle.autograd.backward(self.caches['outputs'][cache_id])
            self._send_gradients(cache_id)
168
            return
169
        self._recv_gradients(cache_id)
170 171 172 173 174

        outputs = self.caches['outputs'][cache_id]

        grad_tensors = self.grad_tensors
        if isinstance(outputs, tuple):
175
            out_tensors = [t for t in outputs if is_float_tensor(t)]
176 177 178 179 180 181 182 183
            assert len(out_tensors) == len(grad_tensors)
            paddle.autograd.backward(
                tensors=out_tensors, grad_tensors=grad_tensors)
        else:
            paddle.autograd.backward(
                tensors=[outputs], grad_tensors=[grad_tensors])

        grad_tensors = None
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        if self.stage_id != 0: self._send_gradients(cache_id)
        self.caches['outputs'][cache_id] = None
        #self.caches['backward_tensors'][cache_id] = None

    def _get_data(self):
        if self.use_model_parallel:
            mp_rank = self._hcg.get_model_parallel_rank()
        else:
            mp_rank = 0

        # mp rank 0 loads the data and broadcat it to others.
        data = self.data
        if self.use_model_parallel and (self.stage_id == 0 or
                                        self.stage_id == self.num_stages - 1):
            assert isinstance(data, (tuple, paddle.Tensor))
            if isinstance(data, paddle.Tensor):
                paddle.distributed.broadcast(
                    data,
                    src=self._hcg.get_model_parallel_group_src_rank(),
                    group=self._hcg.get_model_parallel_group())
            else:
                data = []
                for d in self.data:
                    assert isinstance(d, paddle.Tensor)
                    paddle.distributed.broadcast(
                        d,
                        src=self._hcg.get_model_parallel_group_src_rank(),
                        group=self._hcg.get_model_parallel_group())
                    data.append(d)
            data = tuple(data)
        return data
215 216 217 218 219 220

    def _load_micro_batch(self, cache_id):
        inputs = self._get_data()

        if self.stage_id == 0:
            data = None
221 222 223
            #if isinstance(inputs[0], paddle.Tensor):
            if len(inputs) == 1:
                assert isinstance(inputs[0], paddle.Tensor)
224
                data = inputs[0].clone().detach()
225 226
                #data.stop_gradient = not is_float_tensor(data)
                data.stop_gradient = True
227
            else:
228
                assert isinstance(inputs, tuple)
229
                data = []
230
                for d in inputs:
231
                    assert isinstance(d, paddle.Tensor)
232 233 234 235
                    i = d.clone().detach()
                    #i.stop_gradient = not is_float_tensor(i)
                    i.stop_gradient = True
                    data.append(i)
236 237 238 239
                data = tuple(data)
            self.caches['inputs'][cache_id] = data

        if self.stage_id == self.num_stages - 1:
240 241 242 243 244 245 246 247 248 249 250 251 252
            labels = None
            #if isinstance(inputs[1], paddle.Tensor):
            if len(inputs) == 1:
                assert isinstance(inputs[0], paddle.Tensor)
                labels = inputs[0]
            elif isinstance(inputs, tuple):
                labels = []
                for label in inputs:
                    assert isinstance(label, paddle.Tensor)
                    label = label.detach()
                    labels.append(label)
                labels = tuple(labels)
            self.caches['labels'][cache_id] = labels
253 254 255 256 257 258 259 260 261 262 263

    def _send_meta(self, data, peer):
        """
        % type (0: tensor, 1: tuple)
        % num_tensors if type=tuple
        foreach tensor:
          % ndims
          % shape
        """
        if isinstance(data, paddle.Tensor):
            tensor_type = paddle.to_tensor([0])
264 265
            paddle.distributed.send(
                tensor_type, peer, use_calc_stream=True, group=self.pp_group)
266
            dims = paddle.to_tensor(len(data.shape))
267 268
            paddle.distributed.send(
                dims, peer, use_calc_stream=True, group=self.pp_group)
269
            shape = paddle.to_tensor(data.shape)
270 271
            paddle.distributed.send(
                shape, peer, use_calc_stream=True, group=self.pp_group)
272 273
        elif isinstance(data, tuple):
            tensor_type = paddle.to_tensor([1])
274 275
            paddle.distributed.send(
                tensor_type, peer, use_calc_stream=True, group=self.pp_group)
276
            nums = paddle.to_tensor(len(data))
277 278
            paddle.distributed.send(
                nums, peer, use_calc_stream=True, group=self.pp_group)
279 280 281
            for idx, d in enumerate(data):
                assert isinstance(d, paddle.Tensor)
                dims = paddle.to_tensor(len(d.shape))
282 283
                paddle.distributed.send(
                    dims, peer, use_calc_stream=True, group=self.pp_group)
284
                shape = paddle.to_tensor(d.shape)
285 286
                paddle.distributed.send(
                    shape, peer, use_calc_stream=True, group=self.pp_group)
287 288 289

    def _recv_meta(self, peer):
        tensor_type = paddle.to_tensor([0])
290 291
        paddle.distributed.recv(
            tensor_type, peer, use_calc_stream=True, group=self.pp_group)
292 293 294 295
        tensor_type = tensor_type.numpy()[0]

        if tensor_type == 0:
            dims = paddle.to_tensor([0])
296 297
            paddle.distributed.recv(
                dims, peer, use_calc_stream=True, group=self.pp_group)
298 299
            dims = dims.numpy()[0]
            shape = paddle.to_tensor([0] * dims)
300 301
            paddle.distributed.recv(
                shape, peer, use_calc_stream=True, group=self.pp_group)
302 303 304 305 306
            shape = shape.numpy().tolist()
            return self._allocate_buffer(
                shape, dtype="float32", num_caches=1)[0]
        elif tensor_type == 1:
            num = paddle.to_tensor([0])
307 308
            paddle.distributed.recv(
                num, peer, use_calc_stream=True, group=self.pp_group)
309 310 311 312
            num = num.numpy()[0]
            shapes = []
            for i in range(num):
                dims = paddle.to_tensor([0])
313 314
                paddle.distributed.recv(
                    dims, peer, use_calc_stream=True, group=self.pp_group)
315 316
                dims = dims.numpy()[0]
                shape = paddle.to_tensor([0] * dims)
317 318
                paddle.distributed.recv(
                    shape, peer, use_calc_stream=True, group=self.pp_group)
319 320 321
                shapes.append(shape.numpy().tolist())

            dtypes = ["float32"] * len(shapes)
322 323 324
            caches = self._allocate_buffers(shapes, dtypes, num_caches=1)[0]
            caches = tuple(caches)
            return caches
325 326 327 328 329 330 331 332 333

    def _send_activations(self, cache_id):
        outputs = self.caches['outputs'][cache_id]

        if self.send_meta:
            self.send_meta = False
            self._send_meta(outputs, self.next_stage_id)

        if isinstance(outputs, paddle.Tensor):
334 335 336 337 338
            paddle.distributed.send(
                outputs,
                self.next_stage_id,
                use_calc_stream=True,
                group=self.pp_group)
339 340
        elif isinstance(outputs, tuple):
            for output in outputs:
341 342 343 344 345
                paddle.distributed.send(
                    output,
                    self.next_stage_id,
                    use_calc_stream=True,
                    group=self.pp_group)
346 347 348 349 350 351 352

    def _send_gradients(self, cache_id):
        inputs = self.caches['inputs'][cache_id]

        if isinstance(inputs, paddle.Tensor):
            assert inputs.grad is not None
            paddle.distributed.send(
353 354 355 356
                paddle.to_tensor(inputs.grad),
                self.prev_stage_id,
                use_calc_stream=True,
                group=self.pp_group)
357 358 359
        else:
            for idx, d in enumerate(inputs):
                # Skip tensors that will not produce a grad
360
                if not is_float_tensor(d):
361 362 363
                    assert d.grad is None
                    continue
                assert d.grad is not None
364 365 366 367 368
                paddle.distributed.send(
                    d.grad,
                    self.prev_stage_id,
                    use_calc_stream=True,
                    group=self.pp_group)
369 370 371 372 373 374 375 376 377 378
        self.caches['inputs'][cache_id] = None

    def _recv_activations(self, cache_id):
        inputs = None

        # Allocate the buffer if necessary
        if self.recv_cache is None:
            self.recv_cache = self._recv_meta(self.prev_stage_id)

        if isinstance(self.recv_cache, paddle.Tensor):
379 380 381 382 383
            paddle.distributed.recv(
                self.recv_cache,
                self.prev_stage_id,
                use_calc_stream=True,
                group=self.pp_group)
384
            inputs = self.recv_cache.clone().detach()
385
            inputs.stop_gradient = not is_float_tensor(inputs)
386 387 388 389 390 391
        else:
            assert isinstance(self.recv_cache, tuple)
            inputs = [None] * len(self.recv_cache)
            for idx, d in enumerate(self.recv_cache):
                assert isinstance(d, paddle.Tensor)

392 393 394 395 396
                paddle.distributed.recv(
                    d,
                    self.prev_stage_id,
                    use_calc_stream=True,
                    group=self.pp_group)
397 398 399 400 401
                inputs[idx] = d.clone().detach()

            inputs = tuple(inputs)

            for d in inputs:
402
                d.stop_gradient = not is_float_tensor(d)
403 404 405 406 407 408 409 410

        self.caches['inputs'][cache_id] = inputs

    def _recv_gradients(self, cache_id):
        outputs = self.caches['outputs'][cache_id]
        if self.grad_tensors is None:
            if isinstance(outputs, paddle.Tensor):
                s = list(outputs.shape)
411
                dtype = 'float16' if self.use_amp else "float32"
412 413 414
                self.grad_tensors = self._allocate_buffer(
                    s, dtype, num_buffers=1)[0]
            else:
415 416 417
                sizes = [list(d.shape) for d in outputs if is_float_tensor(d)]
                dtypes = ['float16'] * len(
                    sizes) if self.use_amp else ['float32'] * len(sizes)
418
                self.grad_tensors = self._allocate_buffers(
419
                    sizes, dtypes, num_caches=1)[0]
420 421

        if isinstance(self.grad_tensors, paddle.Tensor):
422 423 424 425 426
            paddle.distributed.recv(
                self.grad_tensors,
                self.next_stage_id,
                use_calc_stream=True,
                group=self.pp_group)
427 428 429
        else:
            assert isinstance(outputs, tuple)
            for d in self.grad_tensors:
430 431 432 433 434 435 436 437
                paddle.distributed.recv(
                    d,
                    self.next_stage_id,
                    use_calc_stream=True,
                    group=self.pp_group)

    def _step(self):
        self._allreduce_grads()
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
        self.optimizer.step()
        self.optimizer.clear_gradients()

    def _clear_grads(self, inputs):
        if isinstance(inputs, paddle.Tensor):
            if inputs.grad is not None:
                inputs.clear_gradient()
        else:
            for d in inputs:
                if d.grad is not None:
                    d.clear_gradient()

    def _allocate_zeros(self, shape, dtype):
        return paddle.zeros(shape, dtype)

453 454 455 456 457 458 459 460 461 462 463 464 465 466
    def _allocate_buffer(self, shape, dtype, num_caches=-1):
        caches = []
        if num_caches == -1:
            num_caches = self.num_caches
        for count in range(num_caches):
            caches.append(self._allocate_zeros(shape, dtype))
        return caches

    def _allocate_buffers(self, shapes, dtypes, num_caches=-1):
        caches = []
        if num_caches == -1:
            num_caches = self.num_caches
        for count in range(num_caches):
            cache = []
467
            for shape, dtype in zip(shapes, dtypes):
468 469 470
                cache.append(self._allocate_zeros(shape, dtype))
            caches.append(cache)
        return caches
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

    def save_state_dict(self, model_path):
        state_dict = self._layers.state_dict()
        paddle.save(state_dict, model_path)

    def load_state_dict(self, model_path):
        state_dict = paddle.load(self.model_path)
        self._layers.set_state_dict(state_dict)

    _COMMAND_MAP = {
        utils.Optimize: _step,
        utils.Forward: _forward,
        utils.Backward: _backward,
    }

    def forward(self, *inputs, **kwargs):
        raise RuntimeError("Call train_batch for pipeline instead of forward.")