tensorrt_engine_op.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#ifdef PADDLE_WITH_CUDA

G
gongweibao 已提交
17 18 19
#include <string>
#include <vector>

20 21
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
22
#include "paddle/fluid/inference/tensorrt/engine.h"
23
#include "paddle/fluid/inference/utils/singleton.h"
G
gongweibao 已提交
24
#include "paddle/fluid/operators/tensorrt_engine_op.h"
25 26

namespace paddle {
27 28 29

DEFINE_int32(tensorrt_engine_batch_size, 1, "the batch_size of TensorRT");

30 31
namespace operators {

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
using inference::Singleton;
using inference::tensorrt::TRT_EngineManager;

using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW("unkown type");
  return TRT_DT::kINT32;
}

nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t> &shape) {
  PADDLE_ENFORCE_GT(shape.size(), 1UL,
                    "TensorRT' tensor input requires at least 2 dimensions");
  PADDLE_ENFORCE_LE(shape.size(), 4UL,
                    "TensorRT' tensor input requires at most 4 dimensions");

  switch (shape.size()) {
    case 2:
61
      return nvinfer1::Dims2(1, shape[1]);
62
    case 3:
63
      return nvinfer1::Dims3(1, shape[1], shape[2]);
64
    case 4:
65
      return nvinfer1::Dims4(1, shape[1], shape[2], shape[3]);
66 67 68 69 70 71 72 73
    default:
      return nvinfer1::Dims();
  }
  return nvinfer1::Dims();
}

}  // namespace

74
template <typename DeviceContext, typename T>
Y
Yan Chunwei 已提交
75
void TensorRTEngineKernel<DeviceContext, T>::Prepare(
76
    const framework::ExecutionContext &context) const {
77
  VLOG(4) << "Prepare engine";
78
  // Get the ProgramDesc and pass to convert.
79 80
  framework::proto::BlockDesc block_desc;
  block_desc.ParseFromString(context.Attr<std::string>("subgraph"));
Y
Yan Chunwei 已提交
81
  int max_batch = context.Attr<int>("max_batch");
82
  auto max_workspace = context.Attr<int>("max_workspace");
Y
Yan Chunwei 已提交
83 84 85 86 87 88 89 90 91 92 93
  auto params = context.Attr<std::vector<std::string>>("parameters");
  std::unordered_set<std::string> parameters;
  for (const auto &param : params) {
    parameters.insert(param);
  }

  // TODO(Superjomn) replace this with a different stream
  auto *engine = Singleton<TRT_EngineManager>::Global().Create(
      max_batch, max_workspace, nullptr /*engine hold its own stream*/,
      context.Attr<std::string>("engine_uniq_key"));
  engine->InitNetwork();
94 95

  framework::BlockDesc block(nullptr /*programdesc*/, &block_desc);
96
  VLOG(4) << "parsed var size " << block.AllVars().size();
97 98 99 100 101
  // Add inputs
  VLOG(4) << "declare inputs";
  for (auto &input : context.Inputs("Xs")) {
    VLOG(4) << "declare input " << input;
    auto *var = block.FindVar(input);
102 103 104
    // TensorRT engine need to create parameters. The parameter's description
    // should be set in
    PADDLE_ENFORCE(var, "no variable called %s", input);
105 106 107
    PADDLE_ENFORCE_EQ(var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
                      "TensorRT engine only takes LoDTensor as input");
    auto shape = var->GetShape();
108 109 110 111 112 113 114
    // For the special batch_size placeholder -1, drop it and pass the real
    // shape of data.
    // TODO(Superjomn) fix this with batch broadcast, or it can't handle
    // variational batch size.
    if (shape[0] == -1) {
      shape[0] = FLAGS_tensorrt_engine_batch_size;
    }
Y
Yan Chunwei 已提交
115
    engine->DeclareInput(
116 117
        input, FluidDataType2TRT(
                   var->Proto()->type().lod_tensor().tensor().data_type()),
118
        Vec2TRT_Dims(shape));
119 120
  }

121
  inference::Singleton<inference::tensorrt::OpConverter>::Global().ConvertBlock(
Y
Yan Chunwei 已提交
122
      block_desc, parameters, context.scope(), engine);
123 124 125

  // Add outputs
  for (auto &output : context.Outputs("Ys")) {
Y
Yan Chunwei 已提交
126
    engine->DeclareOutput(output);
127 128
  }

Y
Yan Chunwei 已提交
129
  engine->FreezeNetwork();
130 131 132 133 134 135 136
}

class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Xs", "A list of inputs.").AsDuplicable();
    AddOutput("Ys", "A list of outputs").AsDuplicable();
137
    AddAttr<std::string>("subgraph", "the subgraph.");
Y
Yan Chunwei 已提交
138
    AddAttr<std::string>("engine_uniq_key", "unique key for the TRT engine.");
139 140
    AddAttr<int>("max_batch", "the maximum batch size.");
    AddAttr<int>("max_workspace", "the maximum batch size.");
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    AddComment("TensorRT engine operator.");
  }
};

class TensorRTEngineInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {}
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(tensorrt_engine, ops::TensorRTEngineOp,
                  ops::TensorRTEngineOpMaker, ops::TensorRTEngineOpMaker);

REGISTER_OP_CPU_KERNEL(
    tensorrt_engine,
    ops::TensorRTEngineKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TensorRTEngineKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TensorRTEngineKernel<paddle::platform::CPUDeviceContext, int>,
    ops::TensorRTEngineKernel<paddle::platform::CPUDeviceContext, int64_t>);

#endif  // PADDLE_WITH_CUDA