c_recv_op.cu.cc 4.5 KB
Newer Older
S
sandyhouse 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/collective/c_send_op.h"

#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif

namespace paddle {
namespace operators {

template <typename T>
S
sandyhouse 已提交
26
class CRecvOpCUDAKernel : public framework::OpKernel<T> {
S
sandyhouse 已提交
27
 public:
S
sandyhouse 已提交
28
  void Compute(const framework::ExecutionContext &ctx) const override {
S
sandyhouse 已提交
29
#if defined(PADDLE_WITH_NCCL)
S
sandyhouse 已提交
30
    VLOG(0) << "here1";
S
sandyhouse 已提交
31
    auto out = ctx.Output<framework::LoDTensor>("Out");
S
sandyhouse 已提交
32
    VLOG(0) << "here2";
S
sandyhouse 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    // auto out_shape = ctx.Attr<std::vector<int>>("out_shape");
    // auto out_dims = paddle::framework::make_ddim(out_shape);
    int data_type = ctx.Attr<int>("dtype");
    framework::proto::VarType::Type type =
        framework::proto::VarType::Type(data_type);

    // if (data_type == framework::proto::VarType::FP32) {
    //  type = framework::proto::VarType::FP32;
    //} else if (data_type == framework::proto::VarType::FP64) {
    //  type = framework::proto::VarType::FP64;
    //} else if (data_type == framework::proto::VarType::FP16) {
    //  type = framework::proto::VarType::FP16;
    //} else if (data_type == framework::proto::VarType::INT32) {
    //  type = framework::proto::VarType::INT32;
    //} else if (data_type == framework::proto::VarType::INT64) {
    //  type = framework::proto::VarType::INT64;
    //} else {
    //  PADDLE_THROW(platform::errors::InvalidArgument(
    //      "Unknown data type %s for c_recv op.", data_type));
    //}
    ncclDataType_t dtype = platform::ToNCCLDataType(type);
    auto out_dims = out->dims();
    int numel = 0;
    int *numel_ptr = nullptr;
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaMalloc(&numel_ptr, sizeof(int)));
S
sandyhouse 已提交
58 59 60 61

    int rid = ctx.Attr<int>("ring_id");
    auto place = ctx.GetPlace();
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
S
sandyhouse 已提交
62 63 64 65 66 67
    int peer = ctx.Attr<int>("peer");
    PADDLE_ENFORCE_LT(
        peer, comm->nranks(),
        platform::errors::InvalidArgument("The value of peer (%d) you set must "
                                          "be less than comm->nranks (%d).",
                                          peer, comm->nranks()));
S
sandyhouse 已提交
68 69 70 71

    cudaStream_t stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
S
sandyhouse 已提交
72
      stream = static_cast<platform::CUDADeviceContext *>(dev_ctx)->stream();
S
sandyhouse 已提交
73 74 75
    } else {
      stream = comm->stream();
    }
S
sandyhouse 已提交
76 77 78
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::ncclRecv(static_cast<void *>(numel_ptr), 1, ncclInt,
                                    peer, comm->comm(), stream));
S
sandyhouse 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    PADDLE_ENFORCE_CUDA_SUCCESS(
        cudaMemcpy(&numel, numel_ptr, sizeof(int), cudaMemcpyDeviceToHost));
    VLOG(0) << "numel:" << numel;
    VLOG(0) << "out_dims:" << out_dims;
    int rest_numel = 1;
    for (size_t i = 1; i < out_dims.size(); ++i) {
      rest_numel = rest_numel * out_dims[i];
    }
    out_dims[0] = numel / rest_numel;

    VLOG(0) << "out_dims:" << out_dims;
    out->mutable_data<T>(out_dims, place);
    // ncclDataType_t dtype = platform::ToNCCLDataType(out->type());
    // numel = out->numel();
    // VLOG(0) << "numel:" << numel;
S
sandyhouse 已提交
94

S
sandyhouse 已提交
95
    VLOG(0) << "here3";
S
sandyhouse 已提交
96 97
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclRecv(
        out->data<T>(), numel, dtype, peer, comm->comm(), stream));
S
sandyhouse 已提交
98
    VLOG(0) << "rank " << comm->rank() << " recv "
S
sandyhouse 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            << framework::product(out->dims()) << " from " << peer;
#else
    PADDLE_THROW(
        platform::errors::Unavailable("PaddlePaddle should compile with GPU."));
#endif
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(c_recv, ops::CRecvOpCUDAKernel<float>,
                        ops::CRecvOpCUDAKernel<double>,
                        ops::CRecvOpCUDAKernel<int>,
                        ops::CRecvOpCUDAKernel<int64_t>,
                        ops::CRecvOpCUDAKernel<plat::float16>);