pybind.cc 113.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
33
#include "paddle/fluid/framework/io/fs.h"
34
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
35
#include "paddle/fluid/framework/ir/pass_builder.h"
36
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
37 38 39
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/op_info.h"
41
#include "paddle/fluid/framework/op_registry.h"
42
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
45
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
46
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/framework/selected_rows.h"
49
#include "paddle/fluid/framework/tensor_util.h"
50
#include "paddle/fluid/framework/trainer.h"
51
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
52
#include "paddle/fluid/framework/version.h"
H
hong 已提交
53
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
56
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/operators/py_func_op.h"
59
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/platform/cpu_info.h"
61
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/platform/enforce.h"
63
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
64
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
65 66
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
67
#include "paddle/fluid/pybind/box_helper_py.h"
68
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
69
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
70
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
71
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
72
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
73
#include "paddle/fluid/pybind/generator_py.h"
74
#include "paddle/fluid/pybind/global_value_getter_setter.h"
75
#include "paddle/fluid/pybind/gloo_context_py.h"
76
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
77
#include "paddle/fluid/pybind/heter_wrapper_py.h"
78
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
79
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
80
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
81
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
82
#include "paddle/fluid/pybind/pybind_boost_headers.h"
83

84
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
85
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
86
#endif
87
#include "paddle/fluid/framework/data_type.h"
88 89
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
90
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
91
#include "paddle/fluid/pybind/tensor_py.h"
92
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
93
#ifdef PADDLE_WITH_CUDA
94
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
95
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
96
#endif
Y
Yi Wang 已提交
97 98
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
99 100
#endif

101 102 103 104
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
105 106 107 108
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
109 110 111 112
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
113 114
#include "pybind11/stl.h"

115
DECLARE_bool(use_mkldnn);
116

Q
Qiao Longfei 已提交
117 118
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
119 120 121
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
122

123
namespace paddle {
124
namespace pybind {
125
bool IsCompiledWithCUDA() {
126
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
127 128 129 130 131 132
  return false;
#else
  return true;
#endif
}

133 134 135 136 137 138 139 140
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

141 142 143 144 145 146 147 148
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

149 150 151 152 153 154 155 156 157 158 159
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

160
bool IsCompiledWithBrpc() {
161
#ifndef PADDLE_WITH_DISTRIBUTE
162 163
  return false;
#endif
164 165 166 167 168 169

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
170 171
}

Y
update  
Yancey1989 已提交
172
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
173
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
174 175 176 177 178 179
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
180 181 182 183 184 185 186 187 188 189
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
212 213 214
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
228 229
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
230 231
    }
    vec_res.emplace_back(
232
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
233 234 235 236 237 238 239 240 241 242 243 244
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
245 246
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
247 248 249 250 251 252 253 254 255 256 257 258
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
259 260 261
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
262 263 264 265
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
266 267
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
268 269 270 271
  }
  return vec_res;
}

272 273 274 275 276 277 278 279
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
280 281
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
282 283 284 285 286 287 288 289 290 291 292 293 294
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
295 296 297
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
298 299 300 301 302
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
303 304 305 306 307
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
308 309
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
310 311 312
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
313 314 315 316 317 318 319 320 321
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
322 323
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
324 325 326 327 328
  }

  return;
}

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

353 354 355 356 357 358
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
359 360 361
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
362
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
363

364 365
  AssertStaticGraphAndDygraphGradMakerNoDiff();

366
  m.doc() = "C++ core of PaddlePaddle";
367

368 369 370 371
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

372
  BindException(&m);
Y
Yu Yang 已提交
373

374 375
  m.def("set_num_threads", &platform::SetNumThreads);

376 377 378 379
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
398 399 400 401 402 403 404 405 406
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
407
           const Scope &scope, const Executor *executor) {
H
hong 已提交
408
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
409
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
410 411 412
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

413 414 415 416 417 418
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
438

439 440 441 442 443 444
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
445 446
  });

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
472 473 474 475 476 477
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
478
  m.def(
S
sneaxiy 已提交
479
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
480 481 482 483
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
484 485 486
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
503 504 505
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
506
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
507

508
  m.def("_set_fuse_parameter_group_size",
509
        &paddle::framework::ir::SetFuseParameterGroupsSize);
510
  m.def("_set_fuse_parameter_memory_size",
511
        &paddle::framework::ir::SetFuseParameterMemorySize);
512

S
sneaxiy 已提交
513 514 515
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

516 517
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

518 519 520
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

521
  BindImperative(&m);
522

523
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
524
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
525 526
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
527
      .def("_get_dims",
528
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
529
      .def("_set_dims",
Q
qijun 已提交
530
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
531
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
532
           })
Y
yuyang18 已提交
533
      .def("_set_layout",
D
dzhwinter 已提交
534 535 536
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
537
      .def("_alloc_float",
D
dzhwinter 已提交
538
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
539
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
540
           })
541 542 543 544
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
545
      .def("_alloc_float",
Y
Yu Yang 已提交
546
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
547
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
548
           })
549 550 551 552
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
553
      .def("_alloc_int",
Y
Yu Yang 已提交
554
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
555
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
556
           })
557 558 559 560
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
561
      .def("_alloc_int",
D
dzhwinter 已提交
562
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
563
             self.mutable_data<int>(place);
Q
qijun 已提交
564
           })
Y
yuyang18 已提交
565
      .def("_alloc_int",
C
chengduoZH 已提交
566 567 568
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
569
      .def("_alloc_float",
C
chengduoZH 已提交
570 571 572
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
573 574 575 576 577
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
578 579 580 581 582
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
583 584 585 586 587 588 589 590 591 592
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
593
      .def("_clear", &Tensor::clear)
594
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
595
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
596 597
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
598
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
599
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
600
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
601 602
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
603 604 605 606
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
607
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
608
          LoDTensor is to be set.
609 610
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
624

L
Leo Chen 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
664 665 666 667
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
668
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
669
      .def("_dtype", [](Tensor &self) { return self.type(); })
670 671
      .def("_layout",
           [](Tensor &self) { return DataLayoutToString(self.layout()); })
672
      .def("_share_data_with", &Tensor::ShareDataWith)
673 674 675 676 677 678
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
679

L
Leo Chen 已提交
680
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
681
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
756 757 758 759 760 761 762

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
763 764

        )DOC")
765
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
766 767 768 769 770 771 772 773 774
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
775 776
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
777 778 779 780
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
781 782
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
783
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
784
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
785 786
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
787 788 789
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
790
      .def("set_lod",
791
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
792
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
793
             LoD new_lod;
794 795
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
796 797
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
798 799
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
800
             self.set_lod(new_lod);
S
sneaxiy 已提交
801 802 803 804 805
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
806 807 808 809
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
810 811 812 813 814 815 816 817 818 819

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
820
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
821
           )DOC")
822 823 824 825 826 827 828 829 830 831 832
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
833 834
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
835 836 837 838 839
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
840
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
841 842
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
843
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
844

L
Leo Chen 已提交
845
           For example, if recursive_sequence_lengths=[[2, 3]], which means
846
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
847
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
848 849

           Args:
L
Leo Chen 已提交
850 851 852 853
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
854 855 856 857 858 859 860 861 862 863

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
864 865
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
866
           )DOC")
867 868 869 870 871 872 873 874
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
875 876 877 878 879
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
880 881
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
882 883 884 885 886 887 888 889 890 891
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
892
           )DOC")
G
gongweibao 已提交
893
      // Set above comments of set_lod.
894 895 896 897 898 899 900 901
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
902 903
           },
           R"DOC(
L
Leo Chen 已提交
904 905
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
906 907

           Returns:
L
Leo Chen 已提交
908
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
909 910 911 912 913 914 915 916 917 918 919

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
920 921 922 923 924 925 926 927
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
928
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
929 930

           Returns:
L
Leo Chen 已提交
931
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
932 933 934 935 936 937 938 939 940 941 942

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
943 944 945 946 947 948 949
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
950
           )DOC")
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
969
#ifdef _WIN32
970
      });
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1021

Q
qijun 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1033 1034
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1035 1036
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1046
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1047
      .def("rows", [](SelectedRows &self) {
1048 1049 1050 1051 1052
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1053
      });
Q
qijun 已提交
1054

1055
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1056 1057 1058

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1059
      .def(py::init<>())
1060
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1061
      .def("set_int",
1062 1063
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1064 1065 1066 1067 1068 1069 1070
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1071
      .def("get_tensor",
1072 1073
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1074 1075
           },
           py::return_value_policy::reference)
1076 1077 1078 1079
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1080 1081 1082
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1083 1084 1085 1086 1087
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1088 1089 1090
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1091 1092 1093
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1094
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1095 1096 1097 1098 1099
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1100
#endif
Y
Refine  
Yu Yang 已提交
1101 1102
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1103 1104 1105 1106
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1107 1108
             return self.GetMutable<framework::ReaderHolder>();
           },
1109 1110 1111 1112 1113
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1114

S
sneaxiy 已提交
1115
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1116

S
sneaxiy 已提交
1117
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1131
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1132 1133 1134 1135 1136 1137
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1138 1139
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1140
      .def("var",
1141
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1142
             return self.Var(name);
Y
Yu Yang 已提交
1143
           },
S
sneaxiy 已提交
1144 1145
           py::arg("name"),
           R"DOC(
1146
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1147

1148
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1149
           current scope, the variable would be created. Otherwise,
1150
           return the existing variable.
S
sneaxiy 已提交
1151 1152

           Args:
1153 1154
               name (str): the variable name.

S
sneaxiy 已提交
1155
           Returns:
1156
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1157 1158 1159 1160
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1161
           Find variable named :code:`name` in the current scope or
1162
           its parent scope. Return None if not found. 
1163

S
sneaxiy 已提交
1164 1165
           Args:
               name (str): the variable name.
1166

S
sneaxiy 已提交
1167
           Returns:
1168
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1169
           )DOC",
1170
           py::return_value_policy::reference)
1171
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1172 1173 1174 1175 1176 1177
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1178
           py::return_value_policy::reference)
S
sneaxiy 已提交
1179 1180 1181
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1182 1183
           )DOC")
      .def("_kids", &Scope::kids);
1184

S
sneaxiy 已提交
1185 1186 1187 1188 1189 1190
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1191 1192
        R"DOC(
        Create a new scope.
1193

S
sneaxiy 已提交
1194 1195 1196
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1197 1198
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1199 1200
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1201 1202
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1203 1204 1205 1206
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1207 1208
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1209 1210
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1211 1212 1213
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1214 1215
    return ret_values;
  });
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1245 1246 1247
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1248 1249 1250 1251 1252
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1253 1254 1255
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1270
  m.def("prune", [](const ProgramDesc &origin,
1271
                    const std::set<std::string> &feeded_var_names,
1272
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1273
    ProgramDesc prog_with_targets(origin);
1274

1275
    for (const auto &t : targets) {
1276
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1277
    }
1278
    proto::ProgramDesc pruned_desc;
1279 1280 1281 1282
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1283
  });
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1301 1302 1303 1304
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1305 1306 1307
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1308 1309
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1310

Q
qijun 已提交
1311
  // clang-format off
Y
Yu Yang 已提交
1312
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1313 1314
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1315
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1316 1317
                    return new paddle::platform::CPUDeviceContext();
                  })
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1330
      .def_static("create",
D
dzhwinter 已提交
1331
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1332
                      -> paddle::platform::DeviceContext* {
1333
#ifndef PADDLE_WITH_CUDA
1334 1335 1336 1337
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1338
#else
Q
qijun 已提交
1339
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1340
#endif
C
chengduoZH 已提交
1341 1342 1343 1344 1345
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1346 1347 1348 1349
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1350 1351 1352 1353
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1354
// clang-format on
1355
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1356 1357
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1358
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1359 1360 1361 1362 1363

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1364
    The memory of CUDAPlace with different dev_id is not accessible.
1365 1366 1367 1368 1369 1370 1371 1372
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1373 1374 1375 1376

    Examples:
        .. code-block:: python

1377 1378 1379
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1380

1381
        )DOC")
S
sneaxiy 已提交
1382 1383 1384
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1409 1410
             new (&self) platform::CUDAPlace(dev_id);
#else
1411 1412 1413 1414 1415 1416 1417 1418 1419
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1420 1421
#endif
           })
1422
#ifdef PADDLE_WITH_CUDA
1423 1424
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1425 1426 1427 1428
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1429
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1430 1431
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1432 1433 1434
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1435
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1436
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1437

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1483
#ifdef PADDLE_WITH_XPU
1484 1485 1486 1487 1488 1489 1490
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1491 1492 1493
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1494
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1495
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1496 1497 1498
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1499
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1500
    CPUPlace is a descriptor of a device.
1501
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1502 1503 1504 1505

    Examples:
        .. code-block:: python

1506 1507
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1508

1509
        )DOC")
1510
      .def(py::init<>())
S
sneaxiy 已提交
1511 1512
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1513
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1514 1515 1516 1517
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1518
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1519
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1520

1521
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1522 1523 1524 1525 1526 1527
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1528 1529 1530 1531

    Examples:
        .. code-block:: python

1532 1533
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1534

1535
        )DOC")
S
sneaxiy 已提交
1536
      .def("__init__",
S
sneaxiy 已提交
1537
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1538
#ifndef PADDLE_WITH_CUDA
1539 1540 1541
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1542
#endif
S
sneaxiy 已提交
1543
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1544
           })
S
sneaxiy 已提交
1545 1546 1547 1548
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1549 1550
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1551 1552 1553 1554
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1555
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1556 1557
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1558 1559
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1560 1561 1562 1563
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1564
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1565
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1566 1567
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1568 1569
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1570 1571
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1572 1573 1574 1575
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1576 1577
      .def("gpu_device_id",
           [](platform::Place &self) {
1578
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1579
           })
1580 1581 1582 1583
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1584 1585
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1586 1587 1588 1589
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1590 1591 1592 1593
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1594
      .def("set_place",
D
dzhwinter 已提交
1595
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1596
             self = gpu_place;
C
chengduoZH 已提交
1597
           })
1598 1599 1600 1601 1602 1603 1604
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1605

Y
Yu Yang 已提交
1606
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1607 1608 1609 1610 1611
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1612 1613 1614 1615 1616 1617 1618
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1619 1620
            return OpRegistry::CreateOp(desc);
          })
1621
      .def("run",
1622
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1623
              const platform::CPUPlace &place) { self.Run(scope, place); })
1624 1625 1626
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1627 1628
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1629
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1630 1631 1632 1633 1634
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1635 1636 1637 1638 1639 1640 1641
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1642 1643
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1644
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1645
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1646 1647 1648 1649
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1650

1651 1652 1653
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1654 1655 1656 1657 1658 1659 1660 1661 1662
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1663
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1664
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1665
      .def("close", &Executor::Close)
1666 1667
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1668 1669
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1670 1671 1672 1673
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1674
             pybind11::gil_scoped_release release;
1675 1676 1677 1678 1679 1680 1681
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1682 1683 1684
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1685
              std::map<std::string, FetchType *> *fetch_targets,
1686 1687 1688 1689 1690 1691 1692 1693
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1694
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1695 1696 1697 1698 1699 1700 1701
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1712
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1713 1714
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1715
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1716 1717
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1718
      });
S
sneaxiy 已提交
1719

D
dzhwinter 已提交
1720
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1721
  m.def("init_glog", framework::InitGLOG);
1722
  m.def("load_op_library", framework::LoadOpLib);
1723
  m.def("init_devices", []() { framework::InitDevices(); });
1724

1725
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1726
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1727
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1728
  m.def("supports_bfloat16", SupportsBfloat16);
1729
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1730
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1731 1732 1733
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1753 1754 1755 1756 1757 1758 1759
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1769 1770 1771 1772 1773 1774
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1775

1776
  m.def("set_feed_variable", framework::SetFeedVariable);
1777 1778 1779 1780 1781
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1782
            return py::cast(BOOST_GET(LoDTensor, var));
1783
          } else {
1784
            return py::cast(BOOST_GET(LoDTensorArray, var));
1785 1786
          }
        });
1787
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1788

X
Xin Pan 已提交
1789 1790
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1791 1792 1793 1794 1795
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1796
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1797

Y
Yu Yang 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1807
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1808
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1809 1810 1811

    Examples:
        .. code-block:: python
1812

Z
Zeng Jinle 已提交
1813 1814 1815 1816
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1817 1818
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1819 1820 1821 1822 1823 1824
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1825 1826 1827 1828
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1829 1830 1831
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1832 1833 1834 1835 1836 1837
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1838 1839
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1840 1841 1842 1843 1844 1845
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1868

1869 1870 1871 1872 1873 1874 1875 1876
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1877
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1878 1879
                 res[i] = py::cast(std::move(data));
               } else {
1880
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1896
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1897 1898 1899 1900 1901 1902 1903 1904
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1905
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1906 1907 1908 1909 1910 1911 1912 1913 1914
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1915 1916
        )DOC")
      .def("_move_to_list",
1917
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1918 1919 1920 1921
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1922
                 if (data_is_lod_tensor(self[i][j])) {
1923
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1924 1925
                   tmp[j] = py::cast(std::move(var));
                 } else {
1926
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1927 1928 1929 1930 1931 1932
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1942
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1943
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1944
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1945

P
peizhilin 已提交
1946
#ifndef _WIN32
D
dangqingqing 已提交
1947 1948 1949
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1950
#endif
P
peizhilin 已提交
1951
#endif
Y
Yu Yang 已提交
1952

1953 1954 1955 1956 1957 1958
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1959 1960 1961 1962
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1963
      .value("kAll", platform::ProfilerState::kAll)
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1975
  m.def("set_tracer_option", platform::SetTracerOption);
1976 1977
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1978
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1979
  m.def("reset_profiler", platform::ResetProfiler);
1980
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1981 1982 1983
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1984

1985 1986
  m.def("size_of_dtype", framework::SizeOfType);

1987 1988 1989
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1990 1991
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1992
      .def("has", &ir::Pass::Has)
1993 1994 1995
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1996
           })
1997
      .def(
1998
          "set",
1999 2000 2001
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2002 2003
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2004 2005
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2020 2021
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2022
        self.Apply(graph.get());
F
flame 已提交
2023
      });
2024

X
fix  
Xin Pan 已提交
2025 2026
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2041
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2042

Y
yuyang18 已提交
2043
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2044 2045 2046 2047
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2048 2049 2050
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2051 2052 2053
    Examples:
        .. code-block:: python

2054 2055 2056 2057 2058 2059 2060 2061 2062
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2063

2064 2065
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2066

2067
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2068 2069
          sgd_optimizer.minimize(avg_loss)

2070
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2071 2072
          exec_strategy.num_threads = 4

2073 2074 2075
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2076 2077
        )DOC");

2078 2079 2080 2081 2082
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);

Y
yuyang18 已提交
2083
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2084 2085 2086 2087 2088
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2089
          },
2090 2091
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2092 2093 2094 2095 2096 2097 2098
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2112
      .def_property(
2113 2114 2115 2116 2117 2118
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2119 2120 2121 2122 2123
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2124 2125 2126
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2127 2128
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2129 2130 2131 2132 2133 2134 2135
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2136 2137 2138 2139
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2140
                because the temp variable's shape maybe the same between two iterations.
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2151

2152 2153 2154 2155 2156 2157 2158
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2159
              )DOC")
Q
Qiao Longfei 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2181
              )DOC")
2182 2183 2184 2185 2186 2187 2188 2189
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2190 2191 2192 2193 2194
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2195

Y
yuyang18 已提交
2196
  exec_strategy.def_property(
Y
yuyang18 已提交
2197 2198 2199 2200 2201 2202 2203
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2204 2205
      });

C
chengduo 已提交
2206 2207 2208 2209
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2210 2211 2212
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2213 2214 2215
    Examples:
        .. code-block:: python

2216
            import os
2217 2218 2219 2220
            import paddle
            import paddle.static as static

            paddle.enable_static()
2221

2222 2223
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2224

2225 2226 2227 2228
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2229

2230
            build_strategy = static.BuildStrategy()
2231 2232
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2233 2234
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2235
            program = program.with_data_parallel(loss_name=loss.name,
2236 2237
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2238
)DOC");
Y
yuyang18 已提交
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2255 2256 2257 2258
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2259
            self.reduce_ = strategy;
C
chengduo 已提交
2260
          },
2261
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2262 2263
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2264
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2265 2266
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2267
                Default is 'AllReduce'.
F
flame 已提交
2268 2269 2270 2271

                Examples:
                    .. code-block:: python

2272 2273 2274 2275 2276 2277 2278
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2279
                  )DOC")
Y
yuyang18 已提交
2280 2281 2282 2283 2284
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2285 2286 2287 2288
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2289
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2290
          },
2291
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2292
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2293 2294
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2295
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2296 2297 2298 2299

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2300 2301
                        import numpy
                        import os
2302 2303 2304 2305
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2306 2307

                        use_cuda = True
2308 2309
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2310 2311

                        # NOTE: If you use CPU to run the program, you need
2312
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2313 2314 2315 2316 2317 2318
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2319
                            places = static.cpu_places()
C
chengduo 已提交
2320
                        else:
2321
                            places = static.cuda_places()
C
chengduo 已提交
2322

2323 2324 2325 2326
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2327

2328
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2329

2330
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2331
                        build_strategy.gradient_scale_strategy = \
2332 2333 2334
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2335
                                          loss_name=loss.name, build_strategy=build_strategy,
2336
                                          places=places)
C
chengduo 已提交
2337 2338 2339 2340 2341 2342

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2343 2344
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2345
                   )DOC")
Y
yuyang18 已提交
2346 2347 2348 2349
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2350 2351 2352 2353
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2354
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2355
          },
2356
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2357
                writing the SSA Graph to file in the form of graphviz.
2358
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2359 2360 2361 2362

                Examples:
                    .. code-block:: python

2363 2364 2365 2366
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2367

2368 2369
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2370
                    )DOC")
S
sneaxiy 已提交
2371 2372 2373 2374 2375 2376
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2377 2378 2379 2380
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2381 2382
            self.enable_sequential_execution_ = b;
          },
2383 2384
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2385 2386 2387 2388

                Examples:
                    .. code-block:: python

2389 2390 2391 2392 2393 2394
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2395 2396
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2397 2398 2399 2400 2401 2402
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2403 2404 2405 2406
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2407 2408
            self.remove_unnecessary_lock_ = b;
          },
2409 2410
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2411 2412 2413 2414

                Examples:
                    .. code-block:: python

2415 2416 2417 2418 2419 2420
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2421 2422
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2423 2424 2425 2426
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2427
#ifdef WIN32
2428
            PADDLE_THROW(platform::errors::Unavailable(
2429
                "Distribution mode is not supported on Windows platform."));
2430
#endif
2431 2432
            self.num_trainers_ = num_trainers;
          })
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2445 2446 2447 2448 2449 2450
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2451
      .def_property("use_hierarchical_allreduce",
2452 2453 2454 2455 2456 2457
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2458
      .def_property("hierarchical_allreduce_inter_nranks",
2459 2460 2461 2462 2463 2464 2465
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2466 2467 2468 2469 2470 2471
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2472 2473 2474 2475
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2476 2477
            self.fuse_elewise_add_act_ops_ = b;
          },
2478
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2479
                to fuse elementwise_add_op and activation_op,
2480
                it may make the execution faster. Default is False.
F
flame 已提交
2481 2482 2483 2484

                Examples:
                    .. code-block:: python

2485 2486 2487 2488 2489 2490
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2491 2492
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2493 2494 2495 2496
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2497
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2498
                              platform::errors::PreconditionNotMet(
2499 2500
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2510 2511 2512 2513 2514 2515
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2516 2517
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2543 2544 2545 2546
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2547
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2548
                              platform::errors::PreconditionNotMet(
2549 2550
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2561 2562 2563 2564 2565 2566
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2567 2568
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2569 2570 2571 2572 2573 2574
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2575 2576 2577 2578
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2579 2580
            self.fuse_relu_depthwise_conv_ = b;
          },
2581
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2582 2583 2584
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2585
                Default is False.
F
flame 已提交
2586 2587 2588 2589

                Examples:
                    .. code-block:: python

2590 2591 2592 2593 2594 2595
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2596 2597
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2598 2599 2600 2601 2602 2603
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2604 2605 2606 2607
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2608 2609
                      self.fuse_broadcast_ops_ = b;
                    },
2610
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2611 2612 2613 2614
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2615 2616 2617 2618 2619
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2620 2621 2622 2623 2624 2625
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2626 2627
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2628 2629
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2630 2631
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2632 2633
                    },
                    [](BuildStrategy &self, bool b) {
2634 2635 2636 2637
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2638 2639
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2640 2641 2642 2643
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2644 2645 2646 2647
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2648 2649
            self.sync_batch_norm_ = b;
          },
2650
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2651 2652 2653
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2654 2655
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2656 2657 2658 2659

                Examples:
                    .. code-block:: python

2660 2661 2662 2663 2664 2665
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2666 2667
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2668 2669
      .def_property(
          "memory_optimize",
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2684 2685 2686
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2687 2688
            }
          },
2689
          R"DOC((bool, optional): memory opitimize aims to save total memory
2690
                consumption, set to True to enable it.
2691

2692 2693 2694
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2709 2710 2711
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2712 2713 2714
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2715
              PADDLE_THROW(platform::errors::Unavailable(
2716
                  "Distribution mode is not supported on Windows platform."));
2717 2718 2719 2720 2721
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2722 2723 2724
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2725
      .def_property(
D
dzhwinter 已提交
2726 2727 2728
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2729 2730 2731 2732
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2733 2734
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2735 2736 2737 2738
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2739
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2740 2741 2742 2743 2744 2745 2746
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2747 2748 2749 2750
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2751 2752 2753 2754 2755 2756 2757 2758 2759
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2760
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2761
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2762 2763 2764 2765 2766
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2767 2768

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2769
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2770
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2771
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2772 2773 2774 2775
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2776 2777 2778 2779 2780
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2781 2782 2783
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2784 2785 2786 2787
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2788 2789
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2790 2791 2792 2793 2794 2795 2796 2797
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2798
               return py::cast(
2799
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2800 2801
             } else {
               return py::cast(std::move(
2802
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2803
             }
2804 2805
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2806

D
dongdaxiang 已提交
2807
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2808

T
Thunderbrook 已提交
2809 2810
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
2811 2812 2813
#endif
#if (defined PADDLE_WITH_NCCL) && (defined PADDLE_WITH_PSLIB)
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2814
#endif
2815
  BindGlooWrapper(&m);
H
hutuxian 已提交
2816
  BindBoxHelper(&m);
H
hutuxian 已提交
2817 2818 2819
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2820
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2821
  BindNCCLWrapper(&m);
2822 2823 2824
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2825
#endif
F
flame 已提交
2826 2827
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2828
  BindInferenceApi(&m);
2829
  BindCompatible(&m);
2830
  BindDataset(&m);
Y
yaoxuefeng 已提交
2831
  BindGenerator(&m);
Y
Yanghello 已提交
2832 2833 2834
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2835

2836
#ifdef PADDLE_WITH_DISTRIBUTE
T
tangwei12 已提交
2837 2838
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2839
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2840 2841
  BindDistCommunicator(&m);
  BindHeterClient(&m);
2842
#endif
L
Luo Tao 已提交
2843
}
2844
}  // namespace pybind
2845
}  // namespace paddle