__init__.py 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import logging

import paddle.fluid as fluid
import paddle.fluid.io as io
import paddle.fluid.transpiler.distribute_transpiler as dist_transpiler

T
tangwei12 已提交
20 21 22
from paddle.fluid.incubate.fleet.base.fleet_base import Fleet
from paddle.fluid.incubate.fleet.base.fleet_base import Mode
from paddle.fluid.incubate.fleet.base.fleet_base import DistributedOptimizer
23 24


25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
class DistributedStrategy(object):
    def __init__(self):
        # precision configs
        self.use_fp16 = False
        self.use_fp32 = True
        # algorithmic communication
        self.local_sgd = False
        self.dgc = False
        # communication topology configs
        self.h_allreduce = False

    def build(self):
        # make sure we set single precision config True
        if self.use_fp32 and self.use_fp16:
            self.use_fp16 = False
        # make sure we set single algorithmic communication True
        if self.local_sgd and self.dgc:
            self.local_sgd = False
        self.strategy_map["fp16"] = self.use_fp16
        self.strategy_map["fp32"] = self.use_fp32
        self.strategy_map["localsgd"] = self.local_sgd
        self.strategy_map["dgc"] = self.dgc
        self.strategy_map["h_allreduce"] = self.h_allreduce


class DistributedOptimizerFactory(object):
    def strategy_to_optimizer_map(self):
        pattern = {}
        pattern["fp16"] = [
            "MixedPrecisionOptimizer", "MixedPrecisionLocalSGDOptimizer"
        ]
        pattern["fp32"] = ["FullPrecisionOptimizer", "LocalSGDOptimizer"]
        pattern["localsgd"] = [
            "MixedPrecisionLocalSGDOptimizer", "LocalSGDOptimizer"
        ]
        pattern["h_allreduce"] = [
            "FullPrecisionOptimizer",
            "LocalSGDOptimizer",
            "MixedPrecisionOptimizer",
            "MixedPrecisionLocalSGDOptimizer",
        ]
        self.pattern = pattern

    def create_by_strategy(self, optimizer, strategy):
        if strategy == None:
            strategy = DistributedStrategy()
        strategy.build()
        strategy_list = []
        for key in strategy.strategy_map:
            if strategy.strategy_map[key]:
                strategy_list.append(self.pattern[key])
        classname = list(set.intersection(*map(set, strategy_list)))[0]
        return globals()[classname](optimizer, strategy)


class DistributedStrategy(object):
    def __init__(self):
        # precision configs
        self.use_fp16 = False
        self.use_fp32 = True
        # algorithmic communication
        self.local_sgd = False
        self.dgc = False
        # communication topology configs
        self.h_allreduce = False

    def build(self):
        # make sure we set single precision config True
        if self.use_fp32 and self.use_fp16:
            self.use_fp16 = False
        # make sure we set single algorithmic communication True
        if self.local_sgd and self.dgc:
            self.local_sgd = False
        self.strategy_map["fp16"] = self.use_fp16
        self.strategy_map["fp32"] = self.use_fp32
        self.strategy_map["localsgd"] = self.local_sgd
        self.strategy_map["dgc"] = self.dgc
        self.strategy_map["h_allreduce"] = self.h_allreduce


class DistributedOptimizerFactory(object):
    def strategy_to_optimizer_map(self):
        pattern = {}
        pattern["fp16"] = [
            "MixedPrecisionOptimizer", "MixedPrecisionLocalSGDOptimizer"
        ]
        pattern["fp32"] = ["FullPrecisionOptimizer", "LocalSGDOptimizer"]
        pattern["localsgd"] = [
            "MixedPrecisionLocalSGDOptimizer", "LocalSGDOptimizer"
        ]
        pattern["h_allreduce"] = [
            "FullPrecisionOptimizer",
            "LocalSGDOptimizer",
            "MixedPrecisionOptimizer",
            "MixedPrecisionLocalSGDOptimizer",
        ]
        self.pattern = pattern

    def create_by_strategy(self, optimizer, strategy):
        if strategy == None:
            strategy = DistributedStrategy()
        strategy.build()
        strategy_list = []
        for key in strategy.strategy_map:
            if strategy.strategy_map[key]:
                strategy_list.append(self.pattern[key])
        classname = list(set.intersection(*map(set, strategy_list)))[0]
        return globals()[classname](optimizer, strategy)


135 136 137
class Collective(Fleet):
    def __init__(self):
        super(Collective, self).__init__(Mode.COLLECTIVE)
T
tangwei12 已提交
138
        self._local_ip = 0
139

T
tangwei12 已提交
140
    def init_worker(self):
141 142 143
        logging.warn(
            "You should not call 'init_worker' method for collective mode.")

T
tangwei12 已提交
144
    def run_worker(self, main_programs=None, scopes=None):
145 146 147
        logging.warn(
            "You should not call 'run_worker' method for collective mode.")

T
tangwei12 已提交
148
    def init_server(self, model_dir=None):
149 150 151
        logging.warn(
            "You should not call 'init_server' method for collective mode.")

T
tangwei12 已提交
152
    def run_server(self):
153 154 155 156 157 158 159 160
        logging.warn(
            "You should not call 'run_server' method for collective mode.")

    def stop_worker(self):
        logging.warn(
            "You should not call 'stop_worker' method for collective mode.")

    def distributed_optimizer(self, optimizer, strategy=None):
161 162
        self._optimizer = \
            DistributedOptimizerFactory.create_by_strategy(optimizer, strategy)
T
tangwei12 已提交
163
        return self._optimizer
164 165

    def save_inference_model(self,
166
                             executor,
167 168 169 170 171 172
                             dirname,
                             feeded_var_names=None,
                             target_vars=None,
                             main_program=None,
                             export_for_deployment=True):
        io.save_inference_model(dirname, feeded_var_names, target_vars,
T
tangwei12 已提交
173
                                self._executor, main_program, None, None,
174 175
                                export_for_deployment)

176
    def save_persistables(self, executor, dirname, main_program=None):
T
tangwei12 已提交
177
        io.save_persistables(self._executor, dirname, main_program, None)
178 179 180 181 182


fleet = Collective()


183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
class CollectiveOpBasedOptimizer(DistributedOptimizer):
    """
    TBA
    """

    def __init__(self, optimizer, strategy=None):
        super(CollectiveOpBasedOptimizer, self).__init__(optimizer, strategy)

    def _transpile_program(self, startup_program=None):
        startup_program = startup_program if startup_program else \
                          fluid.framework.default_startup_program()
        worker_endpoints = fleet.worker_endpoints()
        trainer_id = fleet.worker_index()
        current_endpoint = fleet.worker_endpoints()[trainer_id]
        # call transpiler
        config = dist_transpiler.DistributeTranspilerConfig()
        config.mode = "collective"
        config.collective_mode = "sgd"
        t = dist_transpiler.DistributeTranspiler(config=config)
        t.transpile(
            trainer_id,
            trainers=','.join(worker_endpoints),
            startup_program=startup_program,
            current_endpoint=current_endpoint)

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        return self._optimizer.backward(loss, startup_program, parameter_list,
                                        no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        return self._optimizer.apply_gradients(params_grads)


class MixedPrecisionOptimizer(CollectiveOpBasedOptimizer):
    """
    TBA
    """

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        pass


class FullPrecisionOptimizer(CollectiveOpBasedOptimizer):
    """
    TBA
    """

    def __init__(self, optimizer, strategy=None):
        super(FullPrecisionOptimizer, self).__init__(optimizer, strategy)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        self._transpile_program(startup_program)

        train_program = loss.block.program
        param_grads = self.backward(loss)
        train_program.global_block().append_op(type='c_sync_compute_stream')
        data_parallel_param_grads = []
        for p, g in param_grads:
            # NOTE: scale will be done on loss scale
            # in multi_devices_graph_pass using nranks.
            reduced_g = fluid.layers.collective._allreduce(g, g)
            data_parallel_param_grads.append([p, reduced_g])
        train_program.global_block().append_op(type='c_sync_comm_stream')
        self.apply_gradients(data_parallel_param_grads)


262 263 264 265 266 267 268 269 270 271 272 273 274
class CollectiveOptimizer(DistributedOptimizer):
    """
    DistributedOptimizer is a wrapper for paddle.fluid.optimizer
    A user should pass a paddle.fluid.optimizer to DistributedOptimizer
    minimize() function is implemented.
    DistributedOptimizer is the starting point for a user who wants to
    run distributed training. The optimized information will be stored in
    Fleet() instance who holds the global information about current distributed
    training.
    """

    def __init__(self, optimizer, strategy=None):
        super(CollectiveOptimizer, self).__init__(optimizer, strategy)
275
        self.strategy = strategy
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        return self._optimizer.backward(loss, startup_program, parameter_list,
                                        no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        return self._optimizer.apply_gradients(params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        minimize a program through loss
        Args:
            loss (Variable|Variable List): loss variable or loss variable list to run optimization.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
        Note that in parameter server mode, a worker will not get anything about optimize_os
        Because optmizer algorithms run on pserver side. We will make this usable in pserver
        process, but currently the optimization part is written into Fleet(). A user does not
        need to care about how to startup a pserver node.
        """
        optimize_ops, param_grads = self._optimizer.minimize(
            loss, startup_program, parameter_list, no_grad_set)

T
tangwei12 已提交
313 314 315
        worker_endpoints = fleet.worker_endpoints()
        trainer_id = fleet.worker_index()
        current_endpoint = fleet.worker_endpoints()[trainer_id]
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

        startup_program = startup_program if startup_program else \
            fluid.framework.default_startup_program

        # call transpiler
        config = dist_transpiler.DistributeTranspilerConfig()
        config.mode = "nccl2"
        t = dist_transpiler.DistributeTranspiler(config=config)
        t.transpile(
            trainer_id,
            trainers=','.join(worker_endpoints),
            startup_program=startup_program,
            current_endpoint=current_endpoint)

        return optimize_ops, param_grads