ExpandConvLayer.cpp 7.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include "ExpandConvLayer.h"
Z
zhangjinchao01 已提交
16 17 18
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

19 20 21 22
DEFINE_bool(use_nnpack,
            false,
            "Whether to use nnpack for convolution calculation.");

Z
zhangjinchao01 已提交
23 24
namespace paddle {

25 26 27 28
/*
 * The calculation of the exconvt(convolution transpose (deconv) operation)
 * is a swap of forward and backward of the calculation of exconv.
 * */
Z
zhangjinchao01 已提交
29
REGISTER_LAYER(exconv, ExpandConvLayer);
30
REGISTER_LAYER(exconvt, ExpandConvLayer);
Z
zhangjinchao01 已提交
31

32 33 34 35
inline bool isDepthwiseConv(int channels, int groups) {
  return channels == groups;
}

Z
zhangjinchao01 已提交
36 37 38
bool ExpandConvLayer::init(const LayerMap &layerMap,
                           const ParameterMap &parameterMap) {
  /* Initialize the basic convolutional parent class */
39
  ExpandConvBaseLayer::init(layerMap, parameterMap);
40 41 42 43 44

  size_t numInputs = config_.inputs_size();
  inputShape_.resize(numInputs);
  filterShape_.resize(numInputs);
  outputShape_.resize(numInputs);
X
xzl 已提交
45

46 47 48
  std::string convType;
  std::string convGradInputType;
  std::string convGradFilterType;
X
xzl 已提交
49

50 51 52 53
  for (int i = 0; i < config_.inputs_size(); i++) {
    std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
    std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};

54 55 56 57 58 59 60
    // Convolution Layer uses the GemmConv function by default.
    convType = "GemmConv";
    convGradInputType = "GemmConvGradInput";
    convGradFilterType = "GemmConvGradFilter";

    // If depth wise convolution and useGpu == true
    if (useGpu_ && isDepthwiseConv(channels_[i], groups_[i]) && !isDeconv_) {
61 62 63
      convType = "DepthwiseConv";
      convGradInputType = "DepthwiseConvGradInput";
      convGradFilterType = "DepthwiseConvGradFilter";
64 65 66 67 68 69 70
    }

    // If depth wise convolution and useGpu == false and ARM-NEON
    if (!useGpu_ && isDepthwiseConv(channels_[i], groups_[i]) && !isDeconv_) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
      convType = "NeonDepthwiseConv";
#endif
X
xzl 已提交
71 72
    }

73
    if (FLAGS_use_nnpack && !isDeconv_) {
74 75 76 77 78 79
      createFunction(forward_,
                     "NNPACKConv",
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i])
H
hedaoyuan 已提交
80
                         .set("algo", std::string("auto")));
81 82
    } else {
      createFunction(forward_,
X
xzl 已提交
83
                     !isDeconv_ ? convType : convGradInputType,
84 85 86 87 88 89
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i]));

      createFunction(backward_,
X
xzl 已提交
90
                     !isDeconv_ ? convGradInputType : convType,
91 92 93 94
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i]));
95

96
      createFunction(backward_,
X
xzl 已提交
97
                     convGradFilterType,
98 99 100 101 102
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i]));
    }
103
  }
Z
zhangjinchao01 已提交
104 105 106
  return true;
}

107 108 109 110 111 112
// i is the index of input layers
#define BACKWARD_INPUT(i, inputs, outputs) \
  backward_[2 * i]->calc(inputs, outputs)
#define BACKWARD_FILTER(i, inputs, outputs) \
  backward_[2 * i + 1]->calc(inputs, outputs)

Z
zhangjinchao01 已提交
113 114 115
void ExpandConvLayer::forward(PassType passType) {
  Layer::forward(passType);

116
  size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();
117
  resetOutput(batchSize, getOutputSize());
Z
zhangjinchao01 已提交
118

119
  // Calculate the shape of the input, output, and filter.
120
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
121 122 123 124 125
    inputShape_[i] = TensorShape({(size_t)batchSize,
                                  (size_t)channels_[i],
                                  (size_t)imgSizeH_[i],
                                  (size_t)imgSizeW_[i]});
    filterShape_[i] =
H
hedaoyuan 已提交
126 127 128 129 130
        TensorShape({(size_t)groups_[i],
                     !isDeconv_ ? (size_t)numFilters_ / groups_[i]
                                : (size_t)channels_[i] / groups_[i],
                     !isDeconv_ ? (size_t)channels_[i] / groups_[i]
                                : (size_t)numFilters_ / groups_[i],
131 132 133 134 135 136
                     (size_t)filterSizeY_[i],
                     (size_t)filterSize_[i]});
    outputShape_[i] = TensorShape({(size_t)batchSize,
                                   (size_t)numFilters_,
                                   (size_t)outputH_[i],
                                   (size_t)outputW_[i]});
Z
zhangjinchao01 已提交
137
  }
138 139 140 141 142 143 144

  // Calculate the output value.
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    BufferArgs inputs;
    BufferArgs outputs;
    inputs.addArg(*getInputValue(i), inputShape_[i]);
    inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
H
hedaoyuan 已提交
145 146 147
    outputs.addArg(*getOutputValue(),
                   outputShape_[i],
                   !isDeconv_ && i == 0 ? ASSIGN_TO : ADD_TO);
148 149 150 151

    forward_[i]->calc(inputs, outputs);
  }

Z
zhangjinchao01 已提交
152
  /* add the bias-vector */
153
  if (biases_.get()) {
Z
zhangjinchao01 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    if (sharedBiases_) {
      addSharedBias();
    } else {
      addUnsharedBias();
    }
  }

  /* activation */
  forwardActivation();
}

void ExpandConvLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr outGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases(outGrad);
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

175
  // Calculate the input grad and filter grad.
176
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
177 178 179 180 181 182 183
    if (getInputGrad(i)) {
      BufferArgs inputs;
      BufferArgs outputs;
      inputs.addArg(*getOutputGrad(), outputShape_[i]);
      inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
      outputs.addArg(*getInputGrad(i), inputShape_[i], ADD_TO);
      BACKWARD_INPUT(i, inputs, outputs);
184
    }
185

Z
zhangjinchao01 已提交
186
    if (weights_[i]->getWGrad()) {
187 188 189 190 191 192 193 194 195 196 197 198
      BufferArgs inputs;
      BufferArgs outputs;
      if (!isDeconv_) {
        inputs.addArg(*getOutputGrad(), outputShape_[i]);
        inputs.addArg(*getInputValue(i), inputShape_[i]);
      } else {
        inputs.addArg(*getInputValue(i), inputShape_[i]);
        inputs.addArg(*getOutputGrad(), outputShape_[i]);
      }
      outputs.addArg(*weights_[i]->getWGrad(), filterShape_[i], ADD_TO);
      BACKWARD_FILTER(i, inputs, outputs);

Z
zhangjinchao01 已提交
199 200 201 202 203 204 205
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}

}  // namespace paddle