distribute_transpiler.py 60.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
19
4. append send_op to send splited variables to server and
20 21
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
22 23 24 25 26 27 28 29

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
30

T
typhoonzero 已提交
31
from __future__ import print_function
32

T
typhoonzero 已提交
33
import math
S
seiriosPlus 已提交
34
import random
35
import numpy as np
36

Y
Yancey1989 已提交
37
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
38
from .. import core, framework
T
typhoonzero 已提交
39
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
40
                        default_startup_program, Block, \
W
Wu Yi 已提交
41
                        Parameter, grad_var_name
42
from details import *
43 44 45

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
46
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
47 48 49
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
50 51


T
typhoonzero 已提交
52 53 54 55 56 57
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
58

T
typhoonzero 已提交
59 60
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
61 62


63 64 65 66
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
67
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
68
    """
69 70 71 72 73 74
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
75
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
76 77 78

    Args:
        var_list (list): List of variables.
79 80
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
81 82
        min_block_size (int): Minimum splitted block size.
    Returns:
83
        blocks (list[(varname, block_id, current_block_size)]): A list
84
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
85 86 87
    """
    blocks = []
    for var in var_list:
88
        split_count = slice_count
T
typhoonzero 已提交
89 90 91 92
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
93
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
94 95 96 97 98 99 100 101 102
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
103
        # update split_count after aligning
T
typhoonzero 已提交
104 105 106 107 108 109 110 111 112
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
        We can use bandwidth effiently when data size is larger than 2MB.If you 
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
129
class DistributeTranspiler(object):
Y
yi.wu 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
164

G
gongweibao 已提交
165 166 167 168 169 170 171 172 173 174 175 176
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

177 178 179 180 181 182 183
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
184 185 186 187 188 189 190 191 192 193 194
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
195 196 197 198 199
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
        self.trainer_num = trainers
Q
qiaolongfei 已提交
200
        self.sync_mode = sync_mode
201 202 203 204 205
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
206
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
207 208 209
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
210
        self._init_splited_vars()
211

Y
Yancey1989 已提交
212 213
        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
214
        send_vars = []
215 216 217 218 219 220

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
221
        grad_var_mapping_items = self.grad_var_mapping.items()
G
gongweibao 已提交
222
        if not self.config.slice_var_up:
S
seiriosPlus 已提交
223 224
            random.seed(self.trainer_num)
            random.shuffle(grad_var_mapping_items)
225 226

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
227
            eplist = ps_dispatcher.dispatch(splited_vars)
228

G
gongweibao 已提交
229
            if not self.config.slice_var_up:
230 231
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
232 233 234 235 236 237 238 239 240
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
241
                index += 1
Y
Yancey1989 已提交
242 243 244 245
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

W
Wu Yi 已提交
246
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
247
                index=index + 1,
248
                type="send",
Y
update  
Yancey1989 已提交
249
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
250 251 252 253 254
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
255 256
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
257 258 259 260 261

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
262
                outputs={},
Y
Yancey1989 已提交
263 264
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
265 266
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
267
                })
Y
Yancey1989 已提交
268 269 270

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
271
        for _, var in enumerate(send_vars):
272
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
273
        ps_dispatcher.reset()
Y
Yancey1989 已提交
274 275
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
276
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
277 278
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
279

Y
Yancey1989 已提交
280
        # step4: Concat the parameters splits together after recv.
281
        for varname, splited_var in self.param_var_mapping.iteritems():
Y
Yancey1989 已提交
282 283 284 285 286 287 288 289
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
290 291 292 293 294
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
295

Q
qiaolongfei 已提交
296 297 298 299 300 301 302 303 304
        if self.sync_mode:
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
                outputs={},
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
305

306
        for varname, splited_var in self.param_var_mapping.iteritems():
T
typhoonzero 已提交
307 308
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
309
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
310
            program.global_block().append_op(
T
typhoonzero 已提交
311
                type="concat",
T
typhoonzero 已提交
312
                inputs={"X": splited_var},
T
typhoonzero 已提交
313
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
314
                attrs={"axis": 0})
T
typhoonzero 已提交
315

316
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
317 318
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
319
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
320

T
typhoonzero 已提交
321
    def get_trainer_program(self):
Y
yi.wu 已提交
322 323 324 325 326 327
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
328
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
329
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
330
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
331 332
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
333 334 335

    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
336
        Get parameter server side program.
337

Y
yi.wu 已提交
338 339
        Args:
            endpoint (str): current parameter server endpoint.
340

Y
yi.wu 已提交
341 342
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
343
        """
Y
yi.wu 已提交
344 345 346 347 348
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
349 350
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
351
        pserver_program.random_seed = self.origin_program.random_seed
352
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
353 354 355 356 357 358 359 360
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
361 362 363 364 365
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
366 367 368 369 370 371 372 373 374
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
375
            if self.sync_mode and self.trainer_num > 1:
376
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
377 378 379 380 381 382 383 384 385
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
386

Q
qiaolongfei 已提交
387
        # step 3
388
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
389 390 391
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
392
        # step 3.2
T
typhoonzero 已提交
393 394 395 396
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
397 398
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
399
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
400
        # step 3.3
T
typhoonzero 已提交
401
        # Iterate through the ops, and if an op and the optimize ops
402
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
403
        # append it into the sub program.
T
typhoonzero 已提交
404 405 406

        global_ops = []

Y
wip  
yi.wu 已提交
407 408
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
409
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
410
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
411
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
412
            elif op not in lr_ops:
Q
Qiyang Min 已提交
413
                self._append_pserver_non_opt_ops(block, op)
414 415 416 417 418 419

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
420

Y
Yancey1989 已提交
421
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
422 423 424 425 426 427 428 429
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
430
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
431 432 433

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
434
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
435 436

            # clone ops
Y
Yancey1989 已提交
437 438
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
439
                # clone sub_block of op
Y
Yancey1989 已提交
440
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
441 442 443 444

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

445
        # append lr decay ops to the child block if exists
446
        lr_ops = self._get_lr_ops()
447 448
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
449
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
450 451
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
452
            optimize_blocks.append(lr_decay_block)
453
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
454
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
455
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
456 457
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
458

T
typhoonzero 已提交
459
        # append op to the current block
Q
qiaolongfei 已提交
460
        grad_to_block_id = []
Q
qiaolongfei 已提交
461
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
462
        for idx, opt_op in enumerate(opt_op_on_pserver):
463
            per_opt_block = pserver_program.create_block(pre_block_idx)
464
            optimize_blocks.append(per_opt_block)
465
            # append grad merging ops before clip and weight decay
T
typhoonzero 已提交
466 467
            # cases may like: 
            # L2Decay op -> clip op -> optimize
468 469 470 471 472 473 474
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
475
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
476 477
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
478
                if ufind.is_connected(op, opt_op) and op not in global_ops:
479
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
480
                                           merged_var, lr_ops)
T
typhoonzero 已提交
481

W
Wu Yi 已提交
482 483
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
484
        # append global ops
485
        if global_ops:
Q
qiaolongfei 已提交
486 487
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
488
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
489
            for glb_op in global_ops:
X
Xi Chen 已提交
490
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
491
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
492

493
        # process distributed lookup_table
Q
qiaolongfei 已提交
494
        prefetch_var_name_to_block_id = []
495 496
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
497
            table_opt_block = self._create_table_optimize_block(
498
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
499
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
500
            prefetch_var_name_to_block_id = self._create_prefetch_block(
501
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
502 503
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
504 505 506 507

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
508
            assert len(prefetch_var_name_to_block_id) > 0
509
        else:
Q
qiaolongfei 已提交
510
            assert len(prefetch_var_name_to_block_id) == 0
511

512
        attrs = {
513
            "optimize_blocks": optimize_blocks,
514 515 516
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
517
            "grad_to_block_id": grad_to_block_id,
518 519 520 521
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
522
            attrs['checkpint_block_id'] = checkpoint_block_id
523

T
typhoonzero 已提交
524 525 526 527 528
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
529
            attrs=attrs)
530

W
Wu Yi 已提交
531
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
532 533 534 535 536 537 538
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
539 540 541 542 543

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
544

Y
yi.wu 已提交
545 546
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
547 548
        """
        s_prog = Program()
T
typhoonzero 已提交
549
        orig_s_prog = default_startup_program()
X
Xin Pan 已提交
550
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
W
Wu Yi 已提交
564
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            if op_on_pserver:
582 583 584
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
585 586 587 588 589 590 591 592 593 594 595
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

596 597
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
659
    def _init_splited_vars(self):
Y
yi.wu 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
683
        if self.config.slice_var_up:
Y
yi.wu 已提交
684 685
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
686 687 688
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
689
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
690 691
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
692 693 694
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
695 696 697 698
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
        assert (len(grad_blocks) == len(param_blocks))

        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
        self.grad_param_mapping = dict()
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]

        # create mapping of endpoint -> split var to create pserver side program
        self.param_grad_ep_mapping = dict()
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

726
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
727 728
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
729
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
730 731 732 733 734 735 736 737 738
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
739 740 741 742 743 744 745 746 747

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

748
                    lookup_table_op_index = list(all_ops).index(op)
749 750 751
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764
                    ids_var = program.global_block().vars[ids_name[0]]
                    prefetch_input_vars = self.create_splited_vars(
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
                    prefetch_output_vars = self.create_splited_vars(
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
765 766

                    # insert split_ids_op
W
Wu Yi 已提交
767
                    program.global_block()._insert_op(
768
                        index=lookup_table_op_index,
769 770 771 772 773 774 775
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
776
                        outputs={"Out": prefetch_input_vars})
777 778

                    # insert prefetch_op
W
Wu Yi 已提交
779
                    program.global_block()._insert_op(
780
                        index=lookup_table_op_index + 1,
781
                        type="prefetch",
Q
qiaolongfei 已提交
782 783
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
784
                        attrs={
785
                            "epmap": pserver_endpoints,
786 787 788
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
789
                        })
790 791

                    # insert concat_op
W
Wu Yi 已提交
792
                    program.global_block()._insert_op(
793 794 795 796 797 798 799
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
800
                            'X': prefetch_output_vars
801
                        },
802 803 804 805 806
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
807
                        })
808 809

                    # delete lookup_table_op
810
                    delete_ops(program.global_block(), [op])
811 812 813
                    # break for loop
                    break

Y
Yancey1989 已提交
814
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
815
        # 2. add split_ids_op and send_op to send gradient to pservers
816 817
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
818
        table_grad_name = grad_var_name(self.table_name)
819 820 821 822
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
823
                program.global_block()._insert_op(
824 825 826 827 828
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
829
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
830
                program.global_block()._insert_op(
831
                    index=op_index + 2,
832
                    type="send",
833
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
834 835
                    outputs={},
                    attrs={
836
                        "sync_mode": True,
Y
Yancey1989 已提交
837 838 839
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
840 841 842 843 844 845
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
874 875

    def _create_table_optimize_block(self, pserver_index, pserver_program,
876
                                     pre_block_idx, grad_to_block_id):
877 878
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
879 880 881 882 883 884 885 886
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
887 888
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
889
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
890
            self.origin_program.global_block().vars[grad_var_name(
891
                self.table_name)])
892 893 894 895

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
896 897
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
898
        ][0]
Q
qiaolongfei 已提交
899
        table_opt_block = pserver_program.create_block(pre_block_idx)
900

901 902 903
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
904
            pserver_side_table_grad_list = [
905 906 907 908 909 910 911 912 913
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

914
            # append sum op for pserver_side_table_grad_list
915 916
            table_opt_block.append_op(
                type="sum",
917
                inputs={"X": pserver_side_table_grad_list},
918 919
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
920 921
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
922
            origin_grad_name = grad_var.name
923 924
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
925 926
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
927
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
928
            grad_var = pserver_program.global_block()._rename_var(
929
                origin_grad_name, splited_grad_name)
930 931 932 933 934 935 936 937 938

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
939
        # only support sgd now
940 941 942 943
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
944
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
945

946 947 948
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

949 950
        return table_opt_block

T
tangwei12 已提交
951 952 953 954 955 956
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
957
        pserver_program.global_block().create_var(
T
tangwei12 已提交
958
            name="kLookupTablePath",
T
tangwei12 已提交
959 960
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
961

T
tangwei12 已提交
962
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
963
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
964 965 966 967
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
968
            attrs={'file_path': "none"})
T
tangwei12 已提交
969 970 971

        return checkpoint_save_block.idx

T
typhoonzero 已提交
972 973 974 975 976
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
977
        Create vars for each split.
T
typhoonzero 已提交
978 979
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
980 981 982 983
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
984 985
        Returns:
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping
986
                from original var name to each var split.
T
typhoonzero 已提交
987
        """
988 989

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
990
        block_map = dict()
991

T
typhoonzero 已提交
992
        var_mapping = dict()
T
typhoonzero 已提交
993 994 995 996 997
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
Y
yi.wu 已提交
998

T
typhoonzero 已提交
999
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
1000
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1001
            if len(splited) == 1:
1002
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1003 1004
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1005
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1006 1007 1008 1009 1010
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1011
                continue
T
typhoonzero 已提交
1012 1013

            var_mapping[varname] = []
T
typhoonzero 已提交
1014 1015 1016 1017
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1018

T
typhoonzero 已提交
1019
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1020
                size = block[1]
T
typhoonzero 已提交
1021 1022 1023 1024
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1025
                new_var_name = ""
1026
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1027 1028 1029 1030 1031
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1032
                var = program.global_block().create_var(
T
typhoonzero 已提交
1033 1034
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1035
                    dtype=orig_var.dtype,
1036
                    type=orig_var.type,
T
typhoonzero 已提交
1037
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1038
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1039
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1040
        return var_mapping
T
done  
typhoonzero 已提交
1041

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1053 1054 1055 1056 1057 1058
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1059
            persistable=persistable)
T
done  
typhoonzero 已提交
1060

Y
Yancey1989 已提交
1061
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1062 1063 1064 1065
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1066
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1076
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1086

T
typhoonzero 已提交
1087 1088 1089 1090
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1091
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1114 1115
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1116
        orig_var_name = ""
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1127
        else:
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1155
        else:
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
            for i in xrange(self.trainer_num):
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1170 1171
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1172 1173 1174 1175 1176 1177 1178 1179
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1180

1181
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1182
                            grad_to_block_id, origin_program, merged_var):
1183
        program = optimize_block.program
T
typhoonzero 已提交
1184
        pserver_block = program.global_block()
T
typhoonzero 已提交
1185
        new_inputs = dict()
T
typhoonzero 已提交
1186 1187
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
1188
        for key in opt_op.input_names:
T
typhoonzero 已提交
1189 1190 1191 1192 1193 1194
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1195
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1196 1197 1198 1199
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1200
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1201
                    name=param_block.name,
T
typhoonzero 已提交
1202
                    persistable=True,
T
typhoonzero 已提交
1203 1204 1205
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1206
            elif key == "LearningRate":
1207
                # learning rate variable has already be created by non-optimize op,
1208
                # don't create it once again.
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1220

T
typhoonzero 已提交
1221
        for key in opt_op.input_names:
1222 1223
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1224
                continue
1225
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1226 1227 1228 1229
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1230
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1231 1232 1233 1234 1235
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1236

1237
        # change output's ParamOut variable
1238 1239
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1240
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1241

1242
        optimize_block.append_op(
T
typhoonzero 已提交
1243 1244
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1245
            outputs=outputs,
T
typhoonzero 已提交
1246 1247
            attrs=opt_op.attrs)

1248 1249 1250 1251 1252 1253 1254 1255 1256
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
        for _, g in var_dict.iteritems():
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1257 1258 1259 1260 1261 1262 1263 1264
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
        for key, varlist in inputs.iteritems():
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1265
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1266 1267 1268 1269 1270 1271 1272 1273

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
        for key, varlist in outputs.iteritems():
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1274
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1275

Y
Yancey1989 已提交
1276
        return block.append_op(
Q
Qiyang Min 已提交
1277 1278 1279
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.attrs)

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1280
        program = optimize_block.program
1281
        # Append the ops for parameters that do not need to be optimized/updated
1282 1283
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1284
        for key, varlist in inputs.iteritems():
1285 1286
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1287
            for var in varlist:
1288 1289 1290 1291 1292 1293 1294
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
1295
                    program.global_block().create_var(
T
typhoonzero 已提交
1296 1297 1298 1299 1300
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1301 1302
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1303
        for key, varlist in outputs.iteritems():
1304 1305 1306
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1307 1308 1309 1310 1311
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
W
Wu Yi 已提交
1312
                    program.global_block()._clone_variable(var)
1313

Y
Yancey1989 已提交
1314
        return optimize_block.append_op(
T
typhoonzero 已提交
1315
            type=opt_op.type,
T
typhoonzero 已提交
1316 1317
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1318 1319
            attrs=opt_op.attrs)

1320 1321 1322 1323
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1324 1325
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1340
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1341 1342
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1343 1344 1345 1346 1347 1348 1349
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1350
        if op.input("Param")[0] in param_names:
1351 1352 1353
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1354
                param = op.input("Param")[0]
T
typhoonzero 已提交
1355
                if same_or_split_var(n, param) and n != param:
1356 1357 1358
                    return True
            return False

T
typhoonzero 已提交
1359
    def _get_input_map_from_op(self, varmap, op):
1360
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1373
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1384 1385 1386 1387 1388 1389

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1390
            if self._is_optimizer_op(op):
1391 1392 1393 1394
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1395
        block = self.origin_program.global_block()
1396 1397 1398 1399 1400
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1401

1402 1403 1404 1405 1406
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1407
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1408 1409 1410 1411 1412 1413
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1414 1415
                    # we only need to append op for once
                    break
1416
        return lr_ops
Y
Yancey1989 已提交
1417

W
Wu Yi 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attrs and \
            int(op.attrs[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

Y
Yancey1989 已提交
1428
    def _get_optimize_pass(self):
1429
        """
1430
        Get optimizer operators, parameters and gradients from origin_program
1431 1432 1433 1434
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1435 1436 1437
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1438
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1439
        for op in block.ops:
W
Wu Yi 已提交
1440
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1441
                opt_ops.append(op)
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
                        op.attrs[RPC_OP_ROLE_ATTR_NAME]:
                        param_name = op.attrs[OP_ROLE_VAR_ATTR_NAME][0]
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1453 1454 1455
            else:
                pass
        return opt_ops, params_grads