bilinear_interp_op.h 5.9 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/fluid/framework/op_registry.h"
W
wangyang59 已提交
14
#include "paddle/fluid/operators/math/math_function.h"
W
wangyang59 已提交
15 16 17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
class BilinearInterpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input_t = ctx.Input<Tensor>("X");      // float tensor
    auto* output_t = ctx.Output<Tensor>("Out");  // float tensor
27
    auto out_dims = output_t->dims();
W
wangyang59 已提交
28 29 30
    auto* input = input_t->data<T>();
    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
31 32 33 34 35 36 37 38
    auto out_size_t = ctx.Input<Tensor>("OutSize");
    if (out_size_t != nullptr) {
      auto out_size_data = out_size_t->data<int>();
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }
    auto* output = output_t->mutable_data<T>(
        {out_dims[0], out_dims[1], out_h, out_w}, ctx.GetPlace());
W
wangyang59 已提交
39 40 41 42 43 44 45 46 47 48
    int batch_size = input_t->dims()[0];
    int channels = input_t->dims()[1];
    int in_h = input_t->dims()[2];
    int in_w = input_t->dims()[3];

    int in_hw = in_h * in_w;
    int out_hw = out_h * out_w;
    int in_chw = channels * in_hw;
    int out_chw = channels * out_hw;

49 50 51 52
    float ratio_h =
        (out_h > 1) ? static_cast<float>(in_h - 1) / (out_h - 1) : 0.f;
    float ratio_w =
        (out_w > 1) ? static_cast<float>(in_w - 1) / (out_w - 1) : 0.f;
W
wangyang59 已提交
53 54

    if (in_h == out_h && in_w == out_w) {
55
      memcpy(output, input, input_t->numel() * sizeof(T));
W
wangyang59 已提交
56 57 58 59 60
    } else {
      for (int k = 0; k < batch_size; ++k) {  // loop for batches
        for (int i = 0; i < out_h; ++i) {     // loop for images
          int h = ratio_h * i;
          int hid = (h < in_h - 1) ? 1 : 0;
61 62
          float h1lambda = ratio_h * i - h;
          float h2lambda = 1.f - h1lambda;
W
wangyang59 已提交
63 64 65 66

          for (int j = 0; j < out_w; ++j) {
            int w = ratio_w * j;
            int wid = (w < in_w - 1) ? 1 : 0;
67 68
            float w1lambda = ratio_w * j - w;
            float w2lambda = 1.f - w1lambda;
W
wangyang59 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
            // calculate four position for bilinear interpolation
            const T* in_pos = &input[k * in_chw + h * in_w + w];
            T* out_pos = &output[k * out_chw + i * out_w + j];

            for (int c = 0; c < channels; ++c) {  // loop for channels
              // bilinear interpolation
              out_pos[0] =
                  h2lambda * (w2lambda * in_pos[0] + w1lambda * in_pos[wid]) +
                  h1lambda * (w2lambda * in_pos[hid * in_w] +
                              w1lambda * in_pos[hid * in_w + wid]);
              in_pos += in_hw;
              out_pos += out_hw;
            }
          }
        }
      }
    }
  }
};

template <typename T>
class BilinearInterpGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* d_output = d_output_t->data<T>();
96
    auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());
W
wangyang59 已提交
97 98 99 100 101
    auto& device_ctx =
        ctx.template device_context<platform::CPUDeviceContext>();
    math::SetConstant<platform::CPUDeviceContext, T> zero;
    zero(device_ctx, d_input_t, static_cast<T>(0.0));

W
wangyang59 已提交
102 103
    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
104 105 106 107 108 109 110 111

    auto out_size_t = ctx.Input<Tensor>("OutSize");
    if (out_size_t != nullptr) {
      auto out_size_data = out_size_t->data<int>();
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }

W
wangyang59 已提交
112 113 114 115 116 117 118 119 120 121
    int batch_size = d_input_t->dims()[0];
    int channels = d_input_t->dims()[1];
    int in_h = d_input_t->dims()[2];
    int in_w = d_input_t->dims()[3];

    int in_hw = in_h * in_w;
    int out_hw = out_h * out_w;
    int in_chw = channels * in_hw;
    int out_chw = channels * out_hw;

122 123 124 125
    float ratio_h =
        (out_h > 1) ? static_cast<float>(in_h - 1) / (out_h - 1) : 0.f;
    float ratio_w =
        (out_w > 1) ? static_cast<float>(in_w - 1) / (out_w - 1) : 0.f;
W
wangyang59 已提交
126 127

    if (in_h == out_h && in_w == out_w) {
128
      memcpy(d_input, d_output, d_input_t->numel() * sizeof(T));
W
wangyang59 已提交
129 130 131 132 133
    } else {
      for (int k = 0; k < batch_size; ++k) {  // loop for batches
        for (int i = 0; i < out_h; ++i) {     // loop for images
          int h = ratio_h * i;
          int hid = (h < in_h - 1) ? 1 : 0;
134 135
          float h1lambda = ratio_h * i - h;
          float h2lambda = 1 - h1lambda;
W
wangyang59 已提交
136 137 138 139

          for (int j = 0; j < out_w; ++j) {
            int w = ratio_w * j;
            int wid = (w < in_w - 1) ? 1 : 0;
140 141
            float w1lambda = ratio_w * j - w;
            float w2lambda = 1 - w1lambda;
W
wangyang59 已提交
142 143 144 145
            T* in_pos = &d_input[k * in_chw + h * in_w + w];
            const T* out_pos = &d_output[k * out_chw + i * out_w + j];

            for (int c = 0; c < channels; ++c) {  // loop for channels
146 147 148 149
              in_pos[0] += h2lambda * w2lambda * out_pos[0];
              in_pos[wid] += h2lambda * w1lambda * out_pos[0];
              in_pos[hid * in_w] += h1lambda * w2lambda * out_pos[0];
              in_pos[hid * in_w + wid] += h1lambda * w1lambda * out_pos[0];
W
wangyang59 已提交
150 151 152 153 154 155 156 157 158 159 160 161
              in_pos += in_hw;
              out_pos += out_hw;
            }
          }
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle