test_paddle_save_load.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
19
import os
20 21
import sys

22 23 24 25 26 27 28 29 30 31 32 33
import paddle
import paddle.nn as nn
import paddle.optimizer as opt

BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
SEED = 10

IMAGE_SIZE = 784
CLASS_NUM = 10

34 35
LARGE_PARAM = 2**26

36

37 38
def random_batch_reader():
    def _get_random_inputs_and_labels():
39
        np.random.seed(SEED)
40 41 42 43
        image = np.random.random([BATCH_SIZE, IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, CLASS_NUM - 1, (
            BATCH_SIZE,
            1, )).astype('int64')
44 45
        return image, label

46 47 48 49 50 51 52 53
    def __reader__():
        for _ in range(BATCH_NUM):
            batch_image, batch_label = _get_random_inputs_and_labels()
            batch_image = paddle.to_tensor(batch_image)
            batch_label = paddle.to_tensor(batch_label)
            yield batch_image, batch_label

    return __reader__
54 55 56 57 58 59 60 61 62 63 64


class LinearNet(nn.Layer):
    def __init__(self):
        super(LinearNet, self).__init__()
        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

    def forward(self, x):
        return self._linear(x)


65 66 67 68 69 70 71 72 73 74
class LayerWithLargeParameters(paddle.nn.Layer):
    def __init__(self):
        super(LayerWithLargeParameters, self).__init__()
        self._l = paddle.nn.Linear(10, LARGE_PARAM)

    def forward(self, x):
        y = self._l(x)
        return y


75 76 77 78 79 80 81 82 83 84
def train(layer, loader, loss_fn, opt):
    for epoch_id in range(EPOCH_NUM):
        for batch_id, (image, label) in enumerate(loader()):
            out = layer(image)
            loss = loss_fn(out, label)
            loss.backward()
            opt.step()
            opt.clear_grad()


85 86 87 88 89 90 91 92 93 94 95
class TestSaveLoadLargeParameters(unittest.TestCase):
    def setUp(self):
        pass

    def test_large_parameters_paddle_save(self):
        # enable dygraph mode
        paddle.disable_static()
        # create network
        layer = LayerWithLargeParameters()
        save_dict = layer.state_dict()

96 97
        path = os.path.join("test_paddle_save_load_large_param_save",
                            "layer.pdparams")
98 99 100 101
        paddle.save(layer.state_dict(), path)
        dict_load = paddle.load(path)
        # compare results before and after saving
        for key, value in save_dict.items():
102
            self.assertTrue(np.array_equal(dict_load[key], value.numpy()))
103 104


105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
class TestSaveLoadPickle(unittest.TestCase):
    def test_pickle_protocol(self):
        # create network
        layer = LinearNet()
        save_dict = layer.state_dict()

        path = os.path.join("test_paddle_save_load_pickle_protocol",
                            "layer.pdparams")

        with self.assertRaises(ValueError):
            paddle.save(save_dict, path, 2.0)

        with self.assertRaises(ValueError):
            paddle.save(save_dict, path, 1)

        with self.assertRaises(ValueError):
            paddle.save(save_dict, path, 5)

        protocols = [2, ]
        if sys.version_info.major >= 3 and sys.version_info.minor >= 4:
            protocols += [3, 4]
        for protocol in protocols:
            paddle.save(save_dict, path, protocol)
            dict_load = paddle.load(path)
            # compare results before and after saving
            for key, value in save_dict.items():
                self.assertTrue(np.array_equal(dict_load[key], value.numpy()))


134 135 136
class TestSaveLoad(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
137
        paddle.disable_static()
138 139

        # config seed
C
cnn 已提交
140
        paddle.seed(SEED)
141 142 143 144 145 146 147 148 149 150
        paddle.framework.random._manual_program_seed(SEED)

    def build_and_train_model(self):
        # create network
        layer = LinearNet()
        loss_fn = nn.CrossEntropyLoss()

        adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

        # create data loader
151 152
        # TODO: using new DataLoader cause unknown Timeout on windows, replace it
        loader = random_batch_reader()
153 154 155 156 157 158 159 160 161 162 163 164 165 166

        # train
        train(layer, loader, loss_fn, adam)

        return layer, adam

    def check_load_state_dict(self, orig_dict, load_dict):
        for var_name, value in orig_dict.items():
            self.assertTrue(np.array_equal(value.numpy(), load_dict[var_name]))

    def test_save_load(self):
        layer, opt = self.build_and_train_model()

        # save
167 168
        layer_save_path = "test_paddle_save_load.linear.pdparams"
        opt_save_path = "test_paddle_save_load.linear.pdopt"
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        layer_state_dict = layer.state_dict()
        opt_state_dict = opt.state_dict()

        paddle.save(layer_state_dict, layer_save_path)
        paddle.save(opt_state_dict, opt_save_path)

        # load
        load_layer_state_dict = paddle.load(layer_save_path)
        load_opt_state_dict = paddle.load(opt_save_path)

        self.check_load_state_dict(layer_state_dict, load_layer_state_dict)
        self.check_load_state_dict(opt_state_dict, load_opt_state_dict)

        # test save load in static mode
        paddle.enable_static()
184
        static_save_path = "static_mode_test/test_paddle_save_load.linear.pdparams"
185 186 187 188 189 190 191 192 193 194 195 196
        paddle.save(layer_state_dict, static_save_path)
        load_static_state_dict = paddle.load(static_save_path)
        self.check_load_state_dict(layer_state_dict, load_static_state_dict)

        # error test cases, some tests relay base test above
        # 1. test save obj not dict error
        test_list = [1, 2, 3]
        with self.assertRaises(NotImplementedError):
            paddle.save(test_list, "not_dict_error_path")

        # 2. test save path format error
        with self.assertRaises(ValueError):
197
            paddle.save(layer_state_dict, "test_paddle_save_load.linear.model/")
198 199 200

        # 3. test load path not exist error
        with self.assertRaises(ValueError):
201
            paddle.load("test_paddle_save_load.linear.params")
202 203 204

        # 4. test load old save path error
        with self.assertRaises(ValueError):
205
            paddle.load("test_paddle_save_load.linear")
206 207 208 209


if __name__ == '__main__':
    unittest.main()