nn.py 151.0 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20 21
from ..layers import square
from ..layers import cross_entropy
22
from ..layers import nn as F
23
from .. import dygraph_utils
M
minqiyang 已提交
24
from . import layers
25
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program
26
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
27
from ..param_attr import ParamAttr
28
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
29 30
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
31
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
32
import numpy as np
33
import numbers
34
import logging
35

36
__all__ = [
37
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
38 39
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
40 41
    'SpectralNorm', 'TreeConv', 'CrossEntropyLoss', 'MSELoss', 'L1Loss',
    'NLLLoss', 'BCELoss'
42
]
M
minqiyang 已提交
43 44


X
Xin Pan 已提交
45
class Conv2D(layers.Layer):
46
    """
47 48
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
49 50 51
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
52 53 54
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
55
    and W is the width of the filter. If the groups is greater than 1,
56
    C will equal the number of input feature map divided by the groups.
57
    Please refer to UFLDL's `convolution
58
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
59
    for more details.
60 61 62 63 64 65 66 67
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

68
        Out = \\sigma (W \\ast X + b)
69 70 71

    Where:

72 73
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
74
    * :math:`\\ast`: Convolution operation.
75
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

98
    Parameters:
99
        num_channels(int): The number of channels in the input image.
100
        num_filters(int): The number of filter. It is as same as the output
101 102
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
103 104
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
105
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
106
            contain two integers, (stride_H, stride_W). Otherwise, the
107 108
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
109
            contain two integers, (padding_H, padding_W). Otherwise, the
110 111
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
112
            contain two integers, (dilation_H, dilation_W). Otherwise, the
113 114
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
115 116 117
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
118 119
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
120 121 122 123
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
124
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
125 126 127 128
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
129 130 131 132 133
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
134

135 136 137 138
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
139

140 141 142
    Returns:
        None
    
143
    Raises:
144
        ValueError: if ``use_cudnn`` is not a bool value.
145 146 147

    Examples:
        .. code-block:: python
L
lujun 已提交
148

149 150 151 152 153
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

154
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
155
          with fluid.dygraph.guard():
156
              conv2d = Conv2D(3, 2, 3)
157 158
              data = to_variable(data)
              conv = conv2d(data)
159 160 161

    """

M
minqiyang 已提交
162
    def __init__(self,
163
                 num_channels,
M
minqiyang 已提交
164 165 166 167 168 169 170 171
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
172 173 174
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
175
        assert param_attr is not False, "param_attr should not be False here."
176 177
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
178 179 180 181
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
182
        self._act = act
M
minqiyang 已提交
183 184 185
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
186 187 188 189 190
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
191

192 193 194 195 196
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
197

198
        self._num_channels = num_channels
199 200
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
201
        else:
202
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
203
                raise ValueError("num_channels must be divisible by groups.")
204 205
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
206
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
207 208

        def _get_default_param_initializer():
209 210
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
211 212 213
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

214
        self.weight = self.create_parameter(
215
            attr=self._param_attr,
M
minqiyang 已提交
216 217 218 219
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

220
        self.bias = self.create_parameter(
221 222
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
223 224
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
225 226

    def forward(self, input):
227 228 229 230 231 232 233 234 235 236 237
        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
                     if self._groups else 1, 'use_cudnn', self._use_cudnn)
            out = core.ops.conv2d(input, self.weight, *attrs)
            pre_bias = out

            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
238 239
        inputs = {
            'Input': [input],
240
            'Filter': [self.weight],
241 242 243 244 245 246 247 248 249
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }
250 251 252

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
253 254 255
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
256 257 258 259
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
260
                'Filter': self.weight,
M
minqiyang 已提交
261
            },
M
minqiyang 已提交
262
            outputs={"Output": pre_bias},
263
            attrs=attrs)
M
minqiyang 已提交
264

265
        if self.bias is not None:
266 267 268 269 270
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
271
                        'Y': [self.bias]},
272 273 274 275
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
276

L
lujun 已提交
277
        # Currently, we don't support inplace in dygraph mode
278
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
279 280


L
lujun 已提交
281
class Conv3D(layers.Layer):
282 283 284 285 286
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
287 288
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
289 290 291 292 293 294 295 296 297 298 299 300 301 302
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
303
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

329
    Parameters:
330
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
331
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
332
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
333
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
334 335 336
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
337
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
338 339
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
340
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
341 342
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
343
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
344 345
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
346 347 348
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
349 350
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
351 352 353
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
354 355
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
356 357 358
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
359 360 361 362 363
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
364
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
365

D
DuYao 已提交
366 367 368 369
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
370

371
    Returns:
D
DuYao 已提交
372
        None.
373 374 375 376 377 378 379 380

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

381 382 383 384 385 386
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
387
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
388 389
              ret = conv3d(fluid.dygraph.base.to_variable(data))

390 391
    """

L
lujun 已提交
392
    def __init__(self,
393
                 num_channels,
L
lujun 已提交
394 395 396 397 398 399 400 401 402
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
403 404
                 act=None,
                 dtype='float32'):
L
lujun 已提交
405
        assert param_attr is not False, "param_attr should not be False here."
406 407
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
408 409 410
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
411
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
412 413
        self._act = act
        self._use_cudnn = use_cudnn
414 415 416 417
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
418
        self._dtype = dtype
419 420

        if self._groups is None:
421
            num_filter_channels = self._num_channels
L
lujun 已提交
422
        else:
423
            if self._num_channels % self._groups != 0:
L
lujun 已提交
424
                raise ValueError("num_channels must be divisible by groups.")
425
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
426

427 428
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
429 430 431

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
432
                2] * self._num_channels
L
lujun 已提交
433 434 435
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

436
        self.weight = self.create_parameter(
437
            attr=self._param_attr,
L
lujun 已提交
438 439 440 441
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

442
        self.bias = self.create_parameter(
443 444
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
445 446 447 448 449 450 451 452
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
453
            type='conv3d',
L
lujun 已提交
454 455
            inputs={
                'Input': input,
456
                'Filter': self.weight,
L
lujun 已提交
457 458 459 460 461 462 463 464 465 466 467
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

468
        if self.bias is not None:
469 470 471 472 473
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
474
                        'Y': [self.bias]},
475 476 477 478
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
479 480 481 482 483

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
549

550
    Parameters:
551
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
552 553
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
554
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
555
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
556
            Otherwise, the filter will be a square.
D
DuYao 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
572
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
573 574
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
575 576 577 578
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
579 580
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
581 582
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
583 584
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
585 586 587
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
588 589 590 591 592 593 594
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
595

D
DuYao 已提交
596 597 598 599
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
600

L
lujun 已提交
601
    Returns:
D
DuYao 已提交
602
        None.
L
lujun 已提交
603 604 605 606 607 608 609 610

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

611 612 613 614 615 616
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
617
                    num_channels=3,
618 619 620 621 622
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
623 624
    """

L
lujun 已提交
625
    def __init__(self,
626
                 num_channels,
L
lujun 已提交
627
                 num_filters,
628
                 filter_size,
L
lujun 已提交
629 630 631 632 633 634 635 636
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
637 638
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
639 640 641 642 643 644 645
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
646
        self._num_channels = num_channels
L
lujun 已提交
647 648 649 650 651 652
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
653
        self._dtype = dtype
L
lujun 已提交
654

655 656
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
657

658 659
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
660
        self.weight = self.create_parameter(
L
lujun 已提交
661
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
662 663 664 665 666
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
667 668 669 670 671 672 673

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
674
                    'Filter': [self.weight]},
L
lujun 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
690
                        'Y': [self.bias]},
L
lujun 已提交
691 692 693 694 695 696 697 698 699
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
700
class Pool2D(layers.Layer):
701
    """
702 703 704 705 706
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
707 708
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
709

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

754
    Parameters:
755
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
756
            it must contain two integers, (pool_size_Height, pool_size_Width).
757 758 759 760
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
761
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
762 763 764
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
765
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
766 767 768 769 770 771 772
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
773 774

    Returns:
775
        None
776 777 778 779 780 781 782 783 784 785

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
786
          import paddle.fluid as fluid
787 788
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
789 790

          with fluid.dygraph.guard():
791
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
792
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
793 794 795
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
796
             pool2d_res = pool2d(to_variable(data))
797 798 799

    """

M
minqiyang 已提交
800 801 802 803 804 805 806 807
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
808
                 exclusive=True):
M
minqiyang 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

822
        super(Pool2D, self).__init__()
M
minqiyang 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
836 837 838 839 840 841 842 843
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
                     'use_mkldnn', False, 'exclusive', self._exclusive)
            return core.ops.pool2d(input, *attrs)

844 845 846 847
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

848 849 850 851 852 853 854 855 856 857 858 859 860
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
861 862
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
863 864 865
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
866
            outputs={"Out": pool_out},
867
            attrs=attrs)
M
minqiyang 已提交
868
        return pool_out
M
minqiyang 已提交
869 870


S
songyouwei 已提交
871 872 873 874 875 876 877 878 879 880
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

881
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
941
        if in_dygraph_mode():
942 943 944
            pre_bias = _varbase_creator(dtype=input.dtype)
            core.ops.matmul(input, self.weight, pre_bias, 'transpose_X', False,
                            'transpose_Y', False, "alpha", 1)
945 946 947 948 949
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
950 951 952 953

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

954
        attrs = {
S
songyouwei 已提交
955 956 957
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
958 959
        }
        inputs = {"X": [input], "Y": [self.weight]}
960

S
songyouwei 已提交
961 962
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
963
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
S
songyouwei 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
class InstanceNorm(layers.Layer):
    """
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()
        assert bias_attr is not False, "bias_attr should not be False in InstanceNorm."

        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

        self.scale = self.create_parameter(
            attr=self._param_attr,
            shape=[num_channels],
            dtype=self._dtype,
            default_initializer=Constant(1.0),
            is_bias=False)
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[num_channels],
            dtype=self._dtype,
            default_initializer=Constant(0.0),
            is_bias=True)

    def forward(self, input):
        if in_dygraph_mode():
            out, _, _ = core.ops.instance_norm(input, self.scale, self.bias,
                                               'epsilon', self._epsilon)
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

        inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return instance_norm_out


M
minqiyang 已提交
1104
class BatchNorm(layers.Layer):
1105
    """
1106 1107 1108 1109 1110
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1111 1112 1113 1114
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1115 1116 1117
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1118 1119 1120 1121 1122 1123 1124 1125

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1126 1127
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1128 1129 1130

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1131 1132 1133 1134 1135 1136
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1137

1138 1139
    The normalization function formula is as follows:
 
1140 1141 1142
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1143 1144 1145 1146 1147 1148
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1149

1150
    Parameters:
1151
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1152
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1153 1154 1155
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1156 1157 1158
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1159 1160 1161
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1162
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1163 1164 1165
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1166 1167 1168 1169 1170 1171
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1172 1173
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1174
        use_global_stats(bool, optional): Whether to use global mean and
1175 1176 1177
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1178 1179 1180 1181
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1182 1183

    Returns:
1184
        None
1185 1186 1187

    Examples:
        .. code-block:: python
L
lujun 已提交
1188 1189

          import paddle.fluid as fluid
1190 1191
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1192

1193
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1194
          with fluid.dygraph.guard():
1195
              x = to_variable(x)
1196
              batch_norm = fluid.BatchNorm(10)
1197
              hidden1 = batch_norm(x)
1198 1199
    """

M
minqiyang 已提交
1200 1201 1202 1203 1204 1205 1206 1207
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1208
                 dtype='float32',
M
minqiyang 已提交
1209 1210 1211 1212
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1213
                 do_model_average_for_mean_and_var=True,
1214 1215
                 use_global_stats=False,
                 trainable_statistics=False):
1216
        super(BatchNorm, self).__init__()
1217
        self._param_attr = param_attr
1218
        self._bias_attr = bias_attr
1219
        self._act = act
M
minqiyang 已提交
1220 1221 1222

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1223 1224
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1225 1226 1227 1228 1229 1230
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1231
        self.weight = self.create_parameter(
1232
            attr=self._param_attr,
M
minqiyang 已提交
1233 1234 1235
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1236
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1237

1238
        self.bias = self.create_parameter(
1239
            attr=self._bias_attr,
M
minqiyang 已提交
1240 1241 1242
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1243
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1244

1245
        self._mean = self.create_parameter(
M
minqiyang 已提交
1246 1247 1248 1249 1250 1251 1252
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1253
        self._mean.stop_gradient = True
M
minqiyang 已提交
1254

1255
        self._variance = self.create_parameter(
M
minqiyang 已提交
1256 1257 1258 1259 1260 1261 1262
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1263
        self._variance.stop_gradient = True
M
minqiyang 已提交
1264 1265

        self._in_place = in_place
1266
        self._data_layout = data_layout
M
minqiyang 已提交
1267 1268 1269
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1270
        self._fuse_with_relu = False
M
minqiyang 已提交
1271
        self._use_global_stats = use_global_stats
1272
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1273 1274 1275 1276 1277 1278 1279

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1280 1281 1282

        if in_dygraph_mode():
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
1283 1284
                     "is_test", not self.training, "data_layout",
                     self._data_layout, "use_mkldnn", False, "fuse_with_relu",
1285
                     self._fuse_with_relu, "use_global_stats",
1286 1287
                     self._use_global_stats, 'trainable_statistics',
                     self._trainable_statistics)
1288 1289 1290 1291 1292 1293
            batch_norm_out, _, _, _, _ = core.ops.batch_norm(
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
            return dygraph_utils._append_activation_in_dygraph(
                batch_norm_out, act=self._act)

1294 1295 1296
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1297 1298 1299 1300 1301 1302 1303
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1304 1305
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1306
        }
M
minqiyang 已提交
1307

1308 1309 1310 1311 1312 1313 1314 1315
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1316 1317 1318 1319 1320 1321
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1322 1323 1324 1325 1326 1327 1328 1329 1330

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

M
minqiyang 已提交
1331
        self._helper.append_op(
1332
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1333

L
lujun 已提交
1334
        # Currently, we don't support inplace in dygraph mode
1335
        return self._helper.append_activation(batch_norm_out, self._act)
1336 1337


1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
            'is_test': not self.training
            if in_dygraph_mode() else self._is_test,
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

        if in_dygraph_mode():
            attrs = sum(attrs.items(), ())
            out, mask = core.ops.dropout(input, *attrs)
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out


1447 1448 1449 1450
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1451 1452 1453 1454 1455 1456
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1457 1458
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1459

1460
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1461 1462 1463 1464 1465 1466 1467
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1468 1469
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1483

1484
    Parameters:
L
lujun 已提交
1485 1486
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1505
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1506 1507 1508
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1509

Z
zhongpu 已提交
1510 1511
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1512

1513
    Returns:
Z
zhongpu 已提交
1514
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1515 1516

    Examples:
1517

1518 1519
        .. code-block:: python

L
lujun 已提交
1520 1521 1522 1523
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1524
          # example 1
1525 1526
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1527 1528
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1529
              emb = fluid.dygraph.Embedding(
1530 1531 1532
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1533
              static_rlt3 = emb(base.to_variable(inp_word))
1534
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1549 1550
    """

1551 1552 1553 1554 1555 1556 1557
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1558
        super(Embedding, self).__init__()
1559 1560 1561 1562
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1563
            size[0] + padding_idx)
1564 1565 1566

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1567
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1568 1569 1570
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1571
        self.weight = self.create_parameter(
1572 1573 1574 1575 1576 1577
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1578 1579 1580 1581 1582 1583
        if in_dygraph_mode():
            return core.ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1584
        check_variable_and_dtype(input, 'input', ['int64'], 'Embedding')
1585 1586 1587 1588 1589 1590
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1591

1592 1593
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1594
            type='lookup_table_v2',
1595
            inputs={'Ids': input,
1596
                    'W': self.weight},
1597
            outputs={'Out': out},
1598
            attrs=attrs)
1599 1600

        return out
M
minqiyang 已提交
1601 1602


1603
class LayerNorm(layers.Layer):
1604
    """
1605 1606 1607
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1608
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1609

1610
    The formula is as follows:
1611

1612
    ..  math::
1613

1614
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1615

1616
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1617

1618
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1619

1620 1621 1622 1623 1624
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1625

1626
    Parameters:
1627 1628 1629 1630
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1631
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1632
            normalization. Default: True.
1633
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1634
            normalization. Default: True.
1635
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1636
            division by zero. Default: 1e-05.
1637
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1638 1639 1640
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1641
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1642
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1643 1644 1645
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1646
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1647
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1648
                  Default: None.
1649 1650
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1651
    Returns:
1652
        None
1653

1654
    Examples:
1655

1656 1657 1658
        .. code-block:: python

          import paddle.fluid as fluid
1659
          from paddle.fluid.dygraph.base import to_variable
1660 1661
          import numpy

1662
          x = numpy.random.random((3, 32, 32)).astype('float32')
1663
          with fluid.dygraph.guard():
1664
              x = to_variable(x)
1665
              layerNorm = fluid.LayerNorm([32, 32])
1666
              ret = layerNorm(x)
1667

1668
    """
1669

1670
    def __init__(self,
1671
                 normalized_shape,
1672 1673 1674 1675 1676
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1677 1678 1679 1680 1681
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1682

1683
        self._normalized_shape = list(normalized_shape)
1684 1685 1686 1687 1688 1689
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1690 1691
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1692
        if self._scale:
1693
            self.weight = self.create_parameter(
1694 1695 1696 1697
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1698 1699
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1700
                logging.warn("param_attr are only available with scale is True")
1701
            self.weight = None
1702

1703 1704
        if self._shift:
            assert self._bias_attr is not False
1705
            self.bias = self.create_parameter(
1706 1707 1708 1709
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1710 1711
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1712
                logging.warn("bias_attr are only available with shift is True")
1713
            self.bias = None
1714 1715

    def forward(self, input):
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1727 1728 1729 1730 1731 1732 1733 1734

        if in_dygraph_mode():
            pre_act, _, _ = core.ops.layer_norm(
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1735 1736 1737
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1738
        inputs = dict()
1739
        inputs['X'] = [input]
1740
        if self._scale:
1741
            inputs['Scale'] = [self.weight]
1742
        if self._shift:
1743 1744 1745 1746 1747 1748
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1770
        return self._helper.append_activation(layer_norm_out, act=self._act)
1771 1772


M
minqiyang 已提交
1773 1774 1775
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1776 1777 1778 1779 1780
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1791
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1817
    Parameters:
L
lujun 已提交
1818
        size (int): The input dimension value.
D
DuYao 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1828 1829 1830 1831


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1832 1833 1834 1835
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1836 1837 1838 1839 1840
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1841
            is initialized zero. The default value is None.
L
lujun 已提交
1842
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1843
                             The default value is 'tanh'.
L
lujun 已提交
1844
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1845 1846 1847
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1848

D
DuYao 已提交
1849 1850 1851 1852
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1853

M
minqiyang 已提交
1854
    Returns:
D
DuYao 已提交
1855 1856 1857 1858
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1872
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1873 1874 1875
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1876
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1877 1878 1879
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1890
        super(GRUUnit, self).__init__()
1891
        self._bias_attr = bias_attr
M
minqiyang 已提交
1892 1893 1894 1895 1896
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1897 1898
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1899

M
minqiyang 已提交
1900
        self._dtype = dtype
M
minqiyang 已提交
1901 1902
        size = size // 3
        # create weight
1903
        self.weight = self.create_parameter(
M
minqiyang 已提交
1904
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1905 1906

        # create bias
M
minqiyang 已提交
1907
        bias_size = [1, 3 * size]
1908
        self._bias_size = bias_size
1909
        self.bias = self.create_parameter(
M
minqiyang 已提交
1910
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1911

M
minqiyang 已提交
1912
    def forward(self, input, hidden):
1913 1914 1915 1916 1917 1918
        if in_dygraph_mode():
            gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit(
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1919 1920 1921 1922
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
1923 1924 1925 1926 1927
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1928
        if self.bias is not None:
1929
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
1930 1931 1932 1933 1934
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1944 1945
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1946 1947 1948
            })

        return updated_hidden, reset_hidden_pre, gate
1949 1950 1951 1952


class NCE(layers.Layer):
    """
1953 1954 1955 1956 1957
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1958
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1959

1960
    Parameters:
1961 1962
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1963
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1964 1965 1966
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1967
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1968 1969 1970 1971
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1972
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
1973
        sampler (str, optional): The sampler used to sample class from negative classes.
1974 1975
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1976
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1977
                       It is used when sampler is set to 'custom_dist'.
1978
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1979
                       Default: None.
1980 1981
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1982
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1983

1984 1985
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1986

1987 1988
        **bias** (Parameter or None): the learnable bias of this layer.
    
1989
    Returns:
1990
        None
1991 1992 1993 1994

    Examples:
        .. code-block:: python

1995 1996 1997
            import numpy as np
            import paddle.fluid as fluid

1998
            window_size = 5
1999 2000
            dict_size = 20
            label_word = int(window_size // 2) + 1
2001
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2023
                nce = fluid.NCE(
2024
                             num_total_classes=dict_size,
2025
                             dim=embs3.shape[1],
2026 2027 2028 2029 2030 2031 2032
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2033 2034
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2035 2036 2037 2038 2039

    """

    def __init__(self,
                 num_total_classes,
2040
                 dim,
2041
                 sample_weight=None,
2042 2043 2044 2045 2046 2047
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2048 2049 2050
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2051 2052 2053
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2054
        self._dtype = dtype
2055
        self._inputs = dict()
2056
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2144
        self.weight = self.create_parameter(
2145 2146 2147
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2148
            dtype=self._dtype)
2149
        if self._bias_attr:
2150
            self.bias = self.create_parameter(
2151 2152 2153
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2154
                dtype=self._dtype)
2155 2156
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2157

2158
    def forward(self, input, label, sample_weight=None):
2159 2160 2161 2162
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
2191 2192 2193 2194
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2195 2196 2197 2198 2199
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2200
    Parameters:
L
lujun 已提交
2201
        mode (str): The mode for weight sharing. It supports all, channel
2202 2203 2204
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2205 2206 2207
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2208
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2209 2210
          This argument is required when mode is "element".
          Default: None.
2211 2212
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2213
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2214

2215 2216 2217
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2218
    Returns:
2219
        None
2220 2221 2222 2223 2224

    Examples:

        .. code-block:: python

L
lujun 已提交
2225
          import paddle.fluid as fluid
2226
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2227 2228 2229 2230
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2231
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2243
                 input_shape=inp_np.shape,
L
lujun 已提交
2244
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2245
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2246

2247 2248
    """

S
songyouwei 已提交
2249 2250 2251 2252 2253
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2254
                 dtype='float32'):
2255 2256
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2257 2258
        self._mode = mode
        self._param_attr = param_attr
2259
        self._dtype = dtype
S
songyouwei 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
            self._alpha_shape = [1, channel, 1, 1]
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2274
        self.weight = self.create_parameter(
2275 2276 2277 2278 2279 2280 2281
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
2282
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2283 2284 2285 2286
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2287
                    'Alpha': self.weight},
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2308
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2309

2310
    Parameters:
2311 2312 2313 2314 2315
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2316 2317 2318 2319
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2320
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2321
           If it is set to None, the bias is initialized zero. The default value is None.
2322
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2323

D
DuYao 已提交
2324 2325 2326 2327
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2328

2329 2330 2331 2332 2333 2334
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2335 2336 2337 2338 2339 2340 2341
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2342
                    input1_dim=5, input2_dim=4, output_dim=1000)
2343 2344
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2345 2346 2347
    """

    def __init__(self,
2348 2349 2350
                 input1_dim,
                 input2_dim,
                 output_dim,
2351 2352 2353
                 name=None,
                 act=None,
                 param_attr=None,
2354 2355 2356
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2357 2358 2359 2360
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2361 2362 2363
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2364
        self._inputs = dict()
2365
        self._dtype = dtype
2366

2367
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2368
        self.weight = self.create_parameter(
2369 2370 2371 2372
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2373
        bias_size = [1, self._output_dim]
2374
        self.bias = self.create_parameter(
2375 2376 2377 2378
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2379 2380

    def forward(self, x, y):
2381 2382 2383 2384
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2385
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2386
        if self.bias is not None:
2387
            self._inputs["Bias"] = self.bias
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2402
        return self._helper.append_activation(out, act=self._act)
2403 2404 2405 2406


class Conv2DTranspose(layers.Layer):
    """
2407 2408
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2409
    The convolution2D transpose layer calculates the output based on the input,
2410 2411 2412
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2413 2414
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2415 2416
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2417 2418 2419
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2420 2421
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2422 2423 2424 2425 2426 2427 2428 2429 2430

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2431 2432
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2433
    * :math:`\\ast`: Convolution operation.
2434
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2459
    Parameters:
2460
        num_channels(int): The number of channels in the input image.
2461
        num_filters(int): The number of the filter. It is as same as the output
2462
            feature map.
2463 2464 2465
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2466
        output_size(int or tuple, optional): The output image size. If output size is a
2467 2468 2469
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2470
            should follow the formula above. Default: None.
2471
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2472
            contain two integers, (padding_H, padding_W). Otherwise, the
2473 2474
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2475
            contain two integers, (stride_H, stride_W). Otherwise, the
2476 2477
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2478
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2479 2480
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2481 2482 2483 2484
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2485 2486
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2487 2488 2489
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2490
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2491 2492 2493 2494
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2495
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2496
            library is installed. Default: True.
2497
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2498
            Default: None.
2499
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2500

2501 2502
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2503

2504
        **bias** (Parameter or None): the learnable bias of this layer.
2505

2506 2507
    Returns:
        None
2508 2509 2510 2511

    Examples:
       .. code-block:: python

2512
          import paddle.fluid as fluid
2513
          import numpy as np
2514 2515

          with fluid.dygraph.guard():
2516
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2517
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2518
                    num_channels=32, num_filters=2, filter_size=3)
2519 2520
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2521 2522 2523
    """

    def __init__(self,
2524
                 num_channels,
2525
                 num_filters,
2526
                 filter_size,
2527 2528 2529 2530 2531 2532 2533 2534
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2535 2536 2537
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2538 2539 2540
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2541
        self._act = act
2542
        self._groups = groups
2543
        self._num_channels = num_channels
2544 2545 2546 2547 2548 2549 2550
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2551
        self._dtype = dtype
2552

2553 2554 2555
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2556
            self._op_type = 'depthwise_conv2d_transpose'
2557 2558
        else:
            self._op_type = 'conv2d_transpose'
2559 2560 2561 2562 2563

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2564 2565
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2577
        filter_shape = [self._num_channels, self._num_filters // self._groups
2578 2579
                        ] + self._filter_size

2580
        self.weight = self.create_parameter(
2581
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2582

2583
        self.bias = self.create_parameter(
2584 2585 2586 2587 2588
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2589
    def forward(self, input):
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2602 2603 2604 2605
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2616 2617 2618 2619
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2620
            inputs=inputs,
2621
            outputs={'Output': pre_bias},
2622
            attrs=attrs)
2623

2624
        if self.bias is not None:
2625 2626 2627 2628 2629
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2630
                        'Y': [self.bias]},
2631 2632 2633 2634 2635 2636
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2637 2638 2639 2640 2641 2642 2643 2644 2645
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2646
    Parameters:
L
lujun 已提交
2647
        name_scope(str): The name of this class.
2648
        num_filters (int): number of filters.
L
lujun 已提交
2649 2650 2651
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2664 2665 2666 2667
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2681
        assert not in_dygraph_mode(
2682
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2683 2684 2685 2686 2687 2688 2689
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2690
        self._act = act
2691

2692
    def _build_once(self, input):
2693 2694
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2695
        self.weight = self.create_parameter(
2696
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2697

2698
        self.bias = self.create_parameter(
2699 2700 2701 2702 2703
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2704 2705 2706 2707 2708 2709
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2710
                'Filter': [self.weight],
2711 2712 2713 2714 2715 2716 2717
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2718

2719
        if self.bias is not None:
2720 2721 2722 2723 2724
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2725
                        'Y': [self.bias]},
2726 2727 2728 2729 2730 2731
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2732 2733 2734


class RowConv(layers.Layer):
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2753
    Parameters:
L
lujun 已提交
2754
        name_scope(str): The name of this class.
2755 2756 2757
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2758 2759
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2760

2761 2762 2763
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2764
    Returns:
L
lujun 已提交
2765 2766
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2782 2783 2784 2785 2786
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2787
        assert not in_dygraph_mode(
2788
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2789 2790 2791 2792 2793
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2794
    def _build_once(self, input):
L
lujun 已提交
2795 2796
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2797
        self.weight = self.create_parameter(
2798 2799 2800 2801
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2802 2803 2804 2805 2806 2807

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2808
                    'Filter': [self.weight]},
L
lujun 已提交
2809 2810 2811 2812 2813 2814
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2815 2816 2817 2818 2819 2820
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2821
        channels(int): The number of channels of input.
2822 2823 2824 2825 2826 2827 2828 2829 2830
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2831
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2845
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2846
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2847 2848 2849 2850

    """

    def __init__(self,
2851
                 channels,
L
lujun 已提交
2852 2853 2854 2855 2856
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2857 2858 2859
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2860 2861 2862
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2863
        self._channels = channels
L
lujun 已提交
2864 2865
        self._groups = groups
        self._act = act
2866
        self._dtype = dtype
L
lujun 已提交
2867 2868 2869
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2870
        param_shape = [self._channels]
L
lujun 已提交
2871

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2883 2884 2885

    def forward(self, input):
        inputs = {'X': input}
2886
        if self.bias is not None:
2887
            inputs['Bias'] = self.bias
2888
        if self.weight is not None:
2889
            inputs['Scale'] = self.weight
L
lujun 已提交
2890 2891

        # create output
2892
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2914
    """
2915 2916
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
2927
    :attr:`power_iters` should be a positive integer, do following
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2948
    Parameters:
2949
        weight_shape(list or tuple): The shape of weight parameter.
2950 2951 2952 2953
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2954
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2955 2956

    Returns:
2957
        None
2958 2959 2960 2961 2962

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2963
            import numpy as np
2964 2965

            with fluid.dygraph.guard():
2966 2967 2968
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2969 2970 2971

    """

2972 2973 2974 2975 2976 2977 2978
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2979 2980 2981
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2982
        self._dtype = dtype
L
lujun 已提交
2983

2984 2985 2986
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2987

2988
        self.weight_u = self.create_parameter(
L
lujun 已提交
2989 2990 2991 2992
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2993
        self.weight_u.stop_gradient = True
L
lujun 已提交
2994

2995
        self.weight_v = self.create_parameter(
L
lujun 已提交
2996 2997 2998 2999
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3000
        self.weight_v.stop_gradient = True
L
lujun 已提交
3001 3002

    def forward(self, weight):
3003 3004
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3005
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
3021
    """
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3032
        feature_size(int): last dimension of nodes_vector.
3033 3034 3035 3036 3037 3038 3039
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3040
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3041

3042 3043
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3044

3045
        **bias** (Parameter or None): the learnable bias of this layer.
3046

3047 3048
    Returns:
        None
L
lujun 已提交
3049

3050
    Examples:
L
lujun 已提交
3051

3052
        .. code-block:: python
3053

3054 3055
          import paddle.fluid as fluid
          import numpy
3056

3057 3058 3059 3060
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3061
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3062
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3063 3064
    """

L
lujun 已提交
3065
    def __init__(self,
3066
                 feature_size,
L
lujun 已提交
3067 3068 3069 3070 3071 3072
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3073 3074 3075
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3076
        self._name = name
3077
        self._feature_size = feature_size
L
lujun 已提交
3078 3079 3080 3081 3082 3083
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3084 3085
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3086
        if self._bias_attr:
3087
            self.bias = self.create_parameter(
L
lujun 已提交
3088 3089 3090 3091
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
3092
        self.weight = self.create_parameter(
L
lujun 已提交
3093 3094 3095 3096 3097 3098
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
3099 3100
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
3112
                'Filter': self.weight
L
lujun 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
3122
                        'Y': [self.bias]},
L
lujun 已提交
3123 3124 3125 3126 3127
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684


class CrossEntropyLoss(layers.Layer):
    """
    This operator implements the cross entropy loss function. This OP combines `softmax`,
    `cross_entropy`, and `reduce_sum`/`reduce_mean` together.

    It is useful when training a classification problem with `C` classes.
    If provided, the optional argument `weight` should be a 1D Variable assigning
    weight to each of the classes.

    For predictions label, and target label, the loss is calculated as follows.
    .. math::

        loss_j =  -\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right), j = 1,..., K

    If weight is not `None`:
    .. math::

        loss_j =  \\text{weight[class]}(-\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right)), j = 1,..., K

    Parameters:
        input (Variable): Input tensor, the data type is float32,
            float64, int32, int64.
        label (Variable): Label tensor, the data type is float32,
            float64, int32, int64.
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
            to each class. It has the same dimensions as class number and the data type
            is float32, float64, int32, int64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
    Returns:
        The tensor variable storing the cross_entropy_loss of input and label.
    Return type: Variable.
    Examples:
        .. code-block:: python

            # declarative mode
            import paddle.fluid as fluid
            import numpy as np

            input = fluid.layers.data(name='input', shape=[5, 100], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5, 1], dtype='int64')
            weight = fluid.layers.data(name='weight', shape=[100], dtype='float32')
            ce_loss = fluid.dygraph.CrossEntropyLoss(weight=weight, reduction='mean')
            output = ce_loss(input,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            input_data = np.random.random([5, 100]).astype("float32")
            label_data = np.array([[1], [9], [40], [50], [90]]).astype("int64")
            weight_data = np.random.random([100]).astype("float32")
            output = exe.run(fluid.default_main_program(),
                        feed={"input": input_data, "label": label_data,"weight": weight_data},
                        fetch_list=[output],
                        return_numpy=True)
            print(output)

            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                weight = dg.to_variable(weight_data)
                ce_loss = fluid.dygraph.CrossEntropyLoss(weight=weight, reduction='mean')
                output = ce_loss(input, label)
                print(output.numpy())
    """

    def __init__(self, weight=None, reduction='mean'):
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction

    def forward(self, input, label):
        check_variable_and_dtype(input, 'input',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'cross_entropy_loss')
        check_variable_and_dtype(label, 'label',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'cross_entropy_loss')

        if self.reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or 'none',"
                " but received %s, which is not allowed." % self.reduction)

        softmax_out = F.softmax(input)
        if self.weight is not None:
            if isinstance(self.weight, Variable):
                softmax_out = F.elementwise_pow(
                    softmax_out, self.weight, axis=-1)
            else:
                raise ValueError(
                    "The weight' is not a Variable, please convert to Variable.")

        out = cross_entropy(softmax_out, label)

        if self.reduction == 'sum':
            return F.reduce_sum(out)
        elif self.reduction == 'mean':
            return F.reduce_mean(out)
        else:
            return out


class MSELoss(layers.Layer):
    """
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    where `input` and `label` are `float32` tensors of same shape.

    Parameters:
        input (Variable): Input tensor, the data type is float32,
        label (Variable): Label tensor, the data type is float32,
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned. 
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned. 
            Default is ``'mean'``.

    Returns:
        The tensor variable storing the MSE loss of input and label.

    Return type:
        Variable.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle import fluid
            import paddle.fluid.dygraph as dg

            mse_loss = fluid.dygraph.MSELoss()
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            place = fluid.CPUPlace()
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

            # declarative mode
            output = mse_loss(input,label)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output_data = exe.run(
                fluid.default_main_program(),
                feed={"input":input_data, "label":label_data},
                fetch_list=[output],
                return_numpy=True)
            print(output_data)
            # [array([0.04000002], dtype=float32)]

            # imperative mode
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = mse_loss(input, label)
                print(output.numpy())
                # [0.04000002]
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
        if not in_dygraph_mode():
            check_variable_and_dtype(input, 'input', ['float32'], 'MSELoss')
            check_variable_and_dtype(label, 'label', ['float32'], 'MSELoss')

        square_out = square(F.elementwise_sub(input, label))
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(F, reduce_op)(square_out)


class L1Loss(layers.Layer):
    """
    This interface is used to construct a callable object of the ``L1Loss`` class.
    The L1Loss layer calculates the L1 Loss of input predictions and target 
    labels as follows.

    If :attr:`reduction` set to ``'none'``, the unreduced loss is:
    .. math::
        Out = |input - label|
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
    .. math::
        Out = MEAN(|input - label|)
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
    .. math::
        Out = SUM(|input - label|)

    The shape of input predictions and target labels are [N, *], where N is batch_size and `*` 
    means any number of additional dimensions.
    If :attr:`reduction` is ``'none'``, the shape of output loss is [N, *], the same as input.
    If :attr:`reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1], which means the output is a scalar.
    
    Parameters:
        reduction (str, optional): Indicate the reduction to apply to the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned; 
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. 
            Default is ``'mean'``.
    Returns:
        A callable object of L1Loss.
    Examples:
        .. code-block:: python
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            l1_loss = fluid.dygraph.L1Loss(reduction='mean')
            output = l1_loss(input,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
    
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
                    feed={"input":input_data, "label":label_data},
                    fetch_list=[output],
                    return_numpy=True)
    
            print(output_data)  # [array([0.2], dtype=float32)]
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                l1_loss = fluid.dygraph.L1Loss(reduction='mean')
                output = l1_loss(input,label)
                print(output.numpy())  # [0.2]
    """

    def __init__(self, reduction='mean'):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')

        unreduced = F.elementwise_sub(input, label, act='abs')

        if self.reduction == 'sum':
            return F.reduce_sum(unreduced)
        elif self.reduction == 'mean':
            return F.reduce_mean(unreduced)
        else:
            return unreduced


class BCELoss(layers.Layer):
    """
    This interface is used to construct a callable object of the ``BCELoss`` class.
    The BCELoss layer measures the binary_cross_entropy loss between input predictions 
    and target labels. The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the unreduced loss is:

    .. math::
        Out = Out
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions always be the output of sigmoid, and the target labels 
    should be numbers between 0 and 1.

    The shape of input predictions and target labels are [N, *], where N is batch_size and `*` 
    means any number of additional dimensions. If ``reduction`` is ``'none'``, the shape of 
    output is scalar, else the shape of output is same as input.

    Parameters:
        weight (Variable, optional): A manual rescaling weight given to the loss of each 
            batch element. If given, has to be a Variable of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; 
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

    Returns: 
        A callable object of BCELoss.

    Examples:
        .. code-block:: python

            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            input = fluid.data(name="input", shape=[3, 1], dtype='float32')
            label = fluid.data(name="label", shape=[3, 1], dtype='float32')
            bce_loss = fluid.dygraph.BCELoss()
            output = bce_loss(input, label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
    
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
                    feed={"input":input_data, "label":label_data},
                    fetch_list=[output],
                    return_numpy=True)
    
            print(output_data)  # [array([0.65537095], dtype=float32)]
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = bce_loss(input, label)
                print(output.numpy())  # [0.65537095]
    """

    def __init__(self, weight=None, reduction='mean'):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction

    def forward(self, input, label):
        dtype = self._helper.input_dtype(input)

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'bce_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'bce_loss')

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        self._helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]})

        if self.weight is not None:
            if isinstance(self.weight, Variable):
                w = self.weight
                out = F.elementwise_mul(out, w, axis=-1)
            else:
                raise ValueError(
                    "The weight is not a Variable, please convert to Variable.")

        if self.reduction == 'sum':
            return F.reduce_sum(out)
        elif self.reduction == 'mean':
            return F.reduce_mean(out)
        else:
            return out


class NLLLoss(layers.Layer):
    """
    This op accepts input and target label and returns negative log likelihood 
    cross error. It is useful to train a classification problem with C classes.
     
    The input for the loss is epected to contain log-probabilities of
    each classes. It hs to be a Tensor of size either (batch_size, C) or 
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
    
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
 
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
        \ell(x, y) = L = \{l_1,\dots,l_N\}^\\top, \quad
        l_n = - w_{y_n} x_{n,y_n}, \quad
        w_{c} = \\text{weight}[c] \cdot \mathbb{1}\{c \\not= \\text{ignore\\_index}\},

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
        \ell(x, y) = \\begin{cases}
            \\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, &
            \\text{if reduction} = \\text{'mean';}\\\\
            \\sum_{n=1}^N l_n,  &
            \\text{if reduction} = \\text{'sum'.}
        \\end{cases}

    Parameters:
        input (Variable): Input tensor, the data type is float32, float64. 
        label (Variable): Label tensor, the data type is int64_t.
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a Tensor of size `C`. Otherwise,
            it treated as if having all ones. the data type is 
            float32, float64, Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; 
            Default is ``'mean'``.
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient.

    Returns:
        The tensor variable storing the nll_loss.

    Return type: Variable.
    
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.fluid as fluid
            import numpy as np

            input_np = np.random.random(size=(10, 10)).astype(np.float32)
            label_np = np.random.randint(0, 10, size=(10,)).astype(np.int64)
            prog = fluid.Program()
            startup_prog = fluid.Program()
            place = fluid.CPUPlace()
            with fluid.program_guard(prog, startup_prog):
                input = fluid.data(name='input', shape=[10, 10], dtype='float32')
                label = fluid.data(name='label', shape=[10], dtype='int64')
                nll_loss = fluid.dygraph.NLLLoss()
                res = nll_loss(input, label)

                exe = fluid.Executor(place)
                static_result = exe.run(
                    prog,
                    feed={"input": input_np,
                          "label": label_np},
                    fetch_list=[res])
            print(static_result)
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_np)
                label = dg.to_variable(label_np)
                output = nll_loss(input, label)
                print(output.numpy())
    """

    def __init__(self, weight=None, reduction='mean', ignore_index=-100):
        super(NLLLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
        self.ignore_index = ignore_index

    def forward(self, input, label):
        dtype = self._helper.input_dtype(input)

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'nll_loss')
        check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')

        if self.reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % self.reduction)

        x_shape = list(input.shape)
        n = x_shape[0]
        c = x_shape[1]
        x_dims = len(x_shape)
        if x_dims < 2:
            raise ValueError('Expected 2 or more dimensions (got {})'.format(
                x_dims))
        if x_dims != 2 and x_dims != 4:
            input = F.reshape(input, shape=[n, c, 1, -1])
            label = F.reshape(label, shape=[n, 1, -1])
            out_shape = [n] + x_shape[2:]

        inputs = {'X': input, 'Label': label}
        attrs = {'reduction': self.reduction, 'ignore_index': self.ignore_index}

        if self.weight is not None:
            if isinstance(self.weight, Variable):
                inputs['Weight'] = self.weight

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        total_weight = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        outputs = {'Out': out, 'Total_weight': total_weight}

        self._helper.append_op(
            type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs)
        if x_dims != 2 and x_dims != 4 and self.reduction == 'none':
            out = F.reshape(out, shape=out_shape)

        return out