metric_op.py 9.7 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to metric.
"""

18 19
from __future__ import print_function

D
dzhwinter 已提交
20
import warnings
F
fengjiayi 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
23 24
from ..framework import Variable, in_dygraph_mode, _varbase_creator
from .. import core
F
fengjiayi 已提交
25
from ..param_attr import ParamAttr
26
from . import nn
27
from ..data_feeder import check_type_and_dtype
F
fengjiayi 已提交
28

D
dzhwinter 已提交
29
__all__ = ['accuracy', 'auc']
F
fengjiayi 已提交
30 31 32 33


def accuracy(input, label, k=1, correct=None, total=None):
    """
D
dzhwinter 已提交
34 35 36
    accuracy layer.
    Refer to the https://en.wikipedia.org/wiki/Precision_and_recall

F
fengjiayi 已提交
37
    This function computes the accuracy using the input and label.
D
dzhwinter 已提交
38 39 40 41
    If the correct label occurs in top k predictions, then correct will increment by one.
    Note: the dtype of accuracy is determined by input. the input and label dtype can be different.

    Args:
42
        input(Variable): The input of accuracy layer, which is the predictions of network. A LoDTensor or Tensor with type float32,float64.
43 44
            The shape is ``[sample_number, class_dim]`` .
        label(Variable): The label of dataset.  LoDTensor or Tensor with type int32,int64. The shape is ``[sample_number, 1]`` .
45 46 47
        k(int): The top k predictions for each class will be checked. Data type is int64 or int32.
        correct(Variable): The correct predictions count. A Tensor with type int64 or int32.
        total(Variable): The total entries count. A tensor with type int64 or int32.
D
dzhwinter 已提交
48 49

    Returns:
50
        Variable: The correct rate. A Tensor with type float32.
D
dzhwinter 已提交
51 52 53 54

    Examples:
        .. code-block:: python

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
            import paddle.fluid as fluid
            import numpy as np

            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1,1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
            x = np.random.rand(3, 32, 32).astype("float32")
            y = np.array([[1],[0],[1]])
            output= exe.run(feed={"input": x,"label": y},
                             fetch_list=[result[0]])
            print(output)
D
dzhwinter 已提交
73

74
            #[array([0.6666667], dtype=float32)]
F
fengjiayi 已提交
75
    """
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    if in_dygraph_mode():
        topk_out, topk_indices = nn.topk(input, k=k)
        inputs = {
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        }
        acc_out = _varbase_creator(dtype="float32")
        if correct is None:
            correct = _varbase_creator(dtype="int64")
        if total is None:
            total = _varbase_creator(dtype="int64")
        outputs = {
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total]
        }
        outs = core.ops.accuracy(inputs, {}, outputs)
        return outs['Accuracy'][0]

F
fengjiayi 已提交
96
    helper = LayerHelper("accuracy", **locals())
97 98
    check_type_and_dtype(input, 'input', Variable,
                         ['float16', 'float32', 'float64'], 'accuracy')
Q
qingqing01 已提交
99
    topk_out, topk_indices = nn.topk(input, k=k)
X
Xin Pan 已提交
100
    acc_out = helper.create_variable_for_type_inference(dtype="float32")
F
fengjiayi 已提交
101
    if correct is None:
X
Xin Pan 已提交
102
        correct = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
103
    if total is None:
X
Xin Pan 已提交
104
        total = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117
    helper.append_op(
        type="accuracy",
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
    return acc_out
D
dzhwinter 已提交
118 119


T
tangwei12 已提交
120 121 122 123 124 125
def auc(input,
        label,
        curve='ROC',
        num_thresholds=2**12 - 1,
        topk=1,
        slide_steps=1):
Y
Yibing Liu 已提交
126
    """
Y
Yibing Liu 已提交
127
    **Area Under the Curve (AUC) Layer**
Y
Yibing Liu 已提交
128 129

    This implementation computes the AUC according to forward output and label.
130
    It is used very widely in binary classification evaluation.
Y
Yibing Liu 已提交
131

132
    Note: If input label contains values other than 0 and 1, it will be cast
Y
Yibing Liu 已提交
133 134
    to `bool`. Find the relevant definitions `here <https://en.wikipedia.org\
    /wiki/Receiver_operating_characteristic#Area_under_the_curve>`_.
Y
Yibing Liu 已提交
135 136

    There are two types of possible curves:
Y
Yibing Liu 已提交
137 138 139

        1. ROC: Receiver operating characteristic;
        2. PR: Precision Recall
Y
Yibing Liu 已提交
140 141

    Args:
142 143 144
        input(Variable): A floating-point 2D Variable, values are in the range
                         [0, 1]. Each row is sorted in descending order. This
                         input should be the output of topk. Typically, this
Y
Yibing Liu 已提交
145
                         Variable indicates the probability of each label.
146
                         A LoDTensor or Tensor with type float32,float64.
147
        label(Variable): A 2D int Variable indicating the label of the training
Y
Yibing Liu 已提交
148
                         data. The height is batch size and width is always 1.
149
                         A LoDTensor or Tensor with type int32,int64.
Y
Yibing Liu 已提交
150
        curve(str): Curve type, can be 'ROC' or 'PR'. Default 'ROC'.
151
        num_thresholds(int): The number of thresholds to use when discretizing
Y
Yibing Liu 已提交
152
                             the roc curve. Default 200.
W
Wu Yi 已提交
153
        topk(int): only topk number of prediction output will be used for auc.
T
tangwei12 已提交
154 155
        slide_steps: when calc batch auc, we can not only use step currently but the previous steps can be used. slide_steps=1 means use the current step, slide_steps=3 means use current step and the previous second steps, slide_steps=0 use all of the steps.

Y
Yibing Liu 已提交
156 157

    Returns:
158 159 160
        Variable: A tuple representing the current AUC.
        The return tuple is auc_out, batch_auc_out, [
        batch_stat_pos, batch_stat_neg, stat_pos, stat_neg ]
161
        Data type is Tensor, supporting float32, float64.
Y
Yibing Liu 已提交
162 163 164

    Examples:
        .. code-block:: python
165

J
JesseyXujin 已提交
166
            import paddle.fluid as fluid
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
            import numpy as np

            data = fluid.data(name="input", shape=[-1, 32,32], dtype="float32")
            label = fluid.data(name="label", shape=[-1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=2)
            predict = fluid.layers.softmax(input=fc_out)
            result=fluid.layers.auc(input=predict, label=label)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,32,32).astype("float32")
            y = np.array([1,0,1])
            output= exe.run(feed={"input": x,"label": y},
                             fetch_list=[result[0]])
            print(output)
            #[array([0.5])]
Y
Yibing Liu 已提交
185
    """
D
dzhwinter 已提交
186
    helper = LayerHelper("auc", **locals())
X
Xin Pan 已提交
187 188
    auc_out = helper.create_variable_for_type_inference(dtype="float64")
    batch_auc_out = helper.create_variable_for_type_inference(dtype="float64")
W
Wu Yi 已提交
189
    # make tp, tn, fp, fn persistable, so that can accumulate all batches.
T
tangwei12 已提交
190 191

    # for batch auc
192 193 194 195 196
    # we create slide_step+1 buckets, the first slide_steps buckets store 
    # historical batch-level values, and the last bucket stores the sum values of 
    # previous slide_step buckets.
    # The index of bucket that the newest batch will use is determined by batch_id mod slide_steps,
    # and batch_id is store in the last posision of following variable
T
tangwei12 已提交
197 198 199
    batch_stat_pos = helper.create_global_variable(
        persistable=True,
        dtype='int64',
200
        shape=[(1 + slide_steps) * (num_thresholds + 1) + 1])
T
tangwei12 已提交
201 202 203
    batch_stat_neg = helper.create_global_variable(
        persistable=True,
        dtype='int64',
204
        shape=[(1 + slide_steps) * (num_thresholds + 1) + 1])
T
tangwei12 已提交
205 206

    # for global auc
207
    # Needn't maintain the batch id
T
tangwei12 已提交
208
    stat_pos = helper.create_global_variable(
H
hutuxian 已提交
209
        persistable=True, dtype='int64', shape=[1, num_thresholds + 1])
T
tangwei12 已提交
210
    stat_neg = helper.create_global_variable(
H
hutuxian 已提交
211
        persistable=True, dtype='int64', shape=[1, num_thresholds + 1])
T
tangwei12 已提交
212

T
tangwei12 已提交
213
    for var in [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg]:
W
Wu Yi 已提交
214 215
        helper.set_variable_initializer(
            var, Constant(
216
                value=0.0, force_cpu=False))
W
Wu Yi 已提交
217

T
tangwei12 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    # Batch AUC
    helper.append_op(
        type="auc",
        inputs={
            "Predict": [input],
            "Label": [label],
            "StatPos": [batch_stat_pos],
            "StatNeg": [batch_stat_neg]
        },
        attrs={
            "curve": curve,
            "num_thresholds": num_thresholds,
            "slide_steps": slide_steps
        },
        outputs={
            "AUC": [batch_auc_out],
            "StatPosOut": [batch_stat_pos],
            "StatNegOut": [batch_stat_neg]
        })
    # Global AUC
D
dzhwinter 已提交
238
    helper.append_op(
239
        type="auc",
D
dzhwinter 已提交
240
        inputs={
Q
Qiao Longfei 已提交
241
            "Predict": [input],
W
Wu Yi 已提交
242
            "Label": [label],
T
tangwei12 已提交
243 244
            "StatPos": [stat_pos],
            "StatNeg": [stat_neg]
D
dzhwinter 已提交
245
        },
T
tangwei12 已提交
246 247 248 249 250
        attrs={
            "curve": curve,
            "num_thresholds": num_thresholds,
            "slide_steps": 0
        },
W
Wu Yi 已提交
251 252
        outputs={
            "AUC": [auc_out],
T
tangwei12 已提交
253 254
            "StatPosOut": [stat_pos],
            "StatNegOut": [stat_neg]
W
Wu Yi 已提交
255
        })
T
tangwei12 已提交
256 257 258
    return auc_out, batch_auc_out, [
        batch_stat_pos, batch_stat_neg, stat_pos, stat_neg
    ]