tensor.py 43.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
24
from ..data_feeder import convert_dtype
X
xuwei06 已提交
25
import numpy
Y
Yu Yang 已提交
26 27

__all__ = [
L
li099 已提交
28 29 30
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
31
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
32
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
33 34 35
]


X
xuwei06 已提交
36
def create_tensor(dtype, name=None, persistable=False):
37
    """
W
wangchaochaohu 已提交
38
    Create a variable, which will hold a Tensor with data type dtype.
39 40

    Args:
W
wangchaochaohu 已提交
41 42 43 44
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
45
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
46
            default value is False.
47 48

    Returns:
W
wangchaochaohu 已提交
49
        Variable: The tensor to be created according to dtype.
50 51 52 53

    Examples:
        .. code-block:: python

54
          import paddle.fluid as fluid
55 56
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
57
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
58 59
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
60 61


62 63
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
64
                     name=None,
65 66 67 68
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
69
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
70 71 72 73 74
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

75 76 77 78 79 80 81
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
82 83 84
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
85
        default_initializer (Initializer, optional): Initializer for the parameter
86 87

    Returns:
88
        The created parameter.
Y
yuyang18 已提交
89 90

    Examples:
91 92
        .. code-block:: python

93
            import paddle.fluid as fluid
94 95
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
96
    """
Q
Qiao Longfei 已提交
97
    helper = LayerHelper("create_parameter", **locals())
98
    if attr is None:
X
xuwei06 已提交
99
        attr = ParamAttr(name=name)
100 101 102 103
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


104 105 106 107 108 109 110
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
111
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
112

113 114 115
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
116
                      variable will be filled with it.
117 118
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
119
                           Default: False
120
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
121
                         Default: False
122 123
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
124 125

    Returns:
126
        Variable: The created Variable
F
fengjiayi 已提交
127 128 129 130

    Examples:
        .. code-block:: python

131
            import paddle.fluid as fluid
132 133 134
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
135
    """
Q
Qiao Longfei 已提交
136 137
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
138 139 140 141 142
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
143 144 145
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
146

Q
Qiao Longfei 已提交
147 148 149
    return var


150
def cast(x, dtype):
Y
Yu Yang 已提交
151
    """
152 153 154
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
155 156

    Args:
157 158 159 160
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
161 162

    Returns:
163
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
164 165 166

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
167

168
            import paddle.fluid as fluid
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
191 192
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
193
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
194 195 196 197 198 199 200 201 202
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


203
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
204
    """
205 206
    **Concat**

207
    This OP concatenates the input along the axis.
208 209

    Args:
210 211 212 213 214 215 216 217
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
218 219

    Returns:
220
        Variable: A Tensor with the same data type as input's.
221 222 223

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
224

225
            import paddle.fluid as fluid
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
248 249
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
250
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
251 252 253 254 255 256 257 258
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
259 260
def tensor_array_to_tensor(input, axis=1, name=None):
    """
261
    This OP concatenates the input LodTensorArray along the axis.
L
li099 已提交
262 263

    Args:
264 265 266 267 268 269 270 271
        input(Variable): A LodTensorArray with data type float32, float64, int32,
            int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 1.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
L
li099 已提交
272 273

    Returns:
274 275
        Variable: A LoDTensor with the same data type as input's
        Variable: The input LodTensorArray items' dims along the axis.
L
li099 已提交
276 277 278 279

    Examples:
        .. code-block:: python

280
            import paddle.fluid as fluid
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
            import numpy as np

            place = fluid.CPUPlace()

            x1 = fluid.data(name="x", shape=[2,2], lod_level=0)
            tmp = fluid.layers.fill_constant(shape=[2,3], dtype="float32", value=1)
            x_arr = fluid.layers.create_array(dtype="float32")
            c0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            fluid.layers.array_write(x=tmp, i=c0, array=x_arr)
            c1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            fluid.layers.array_write(x=x1, i=c1, array=x_arr)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=x_arr, axis=1)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            feedx = fluid.LoDTensor()
            feedx.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            res = exe.run(fluid.default_main_program(), feed={'x':feedx}, fetch_list=[output], return_numpy=False)
            print(np.array(res[0]))
            # [[ 1.   1.   1.   1.3 -2.4]
            #  [ 1.   1.   1.   0.   4. ]]
L
li099 已提交
303
    """
L
li099 已提交
304
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
305 306 307
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
308
        type='tensor_array_to_tensor',
L
li099 已提交
309 310 311 312 313 314 315
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


316
def sums(input, out=None):
F
fengjiayi 已提交
317 318
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
319 320 321 322 323
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
324
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
325
                             Default: None
K
kavyasrinet 已提交
326 327

    Returns:
F
fengjiayi 已提交
328
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
329 330

    Examples:
F
fengjiayi 已提交
331
        .. code-block:: python
K
kavyasrinet 已提交
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
          import paddle.fluid as fluid

          # sum of several tensors
          a0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
          a1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
          a2 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=3)
          sums = fluid.layers.sums(input=[a0, a1, a2])

          # sum of a tensor array
          array = fluid.layers.create_array('int64')
          i = fluid.layers.zeros(shape=[1], dtype='int64', force_cpu=True)
          fluid.layers.array_write(a0, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a1, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a2, array=array, i=i)
          sums = fluid.layers.sums(input=array)
Y
Yu Yang 已提交
350 351 352
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
353 354
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
355 356 357 358 359
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
360 361 362
    return out


F
fengjiayi 已提交
363
def assign(input, output=None):
364 365 366 367 368 369
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
370
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
371
        output(Variable|None): The destination variable
372 373 374 375 376 377

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
378

379 380
          import paddle.fluid as fluid
          data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
381 382 383 384
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
385
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
386
    if output is None:
X
Xin Pan 已提交
387
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
388 389
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
390
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
391 392
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
393
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
394
            value_name = "fp32_values"
395
            values = [float(v) for v in input.flat]
396
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
397
            value_name = "int32_values"
398
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
399 400
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
401 402 403
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
404 405 406 407 408 409 410

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
411
                value_name: values
X
xuwei06 已提交
412 413 414 415
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
416 417 418
    return output


Q
QI JUN 已提交
419
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
420
    """
W
wangchaochaohu 已提交
421
    This OP creates a Tensor with specified `shape` and `dtype`, and
422
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
423

W
wangchaochaohu 已提交
424
    The attribute `stop_gradient` of the created Tensor is setted to True.
425 426

    Args:
W
wangchaochaohu 已提交
427 428 429 430 431 432 433 434
        shape(tuple|list): Shape of the Tensor to be created.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
        force_cpu(True): data should be on CPU if it's true, defalut value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
435 436

    Returns:
W
wangchaochaohu 已提交
437 438 439 440 441
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
442 443 444 445

    Examples:
        .. code-block:: python

446
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
447 448 449
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') #data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1) 
          #data1=[[5], [5]] data2=[[5], [5]]
Y
Yu Yang 已提交
450
    """
451

Y
Yu Yang 已提交
452
    helper = LayerHelper("fill_constant", **locals())
453 454 455 456 457 458 459
    if convert_dtype(dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64'
    ]:
        raise TypeError(
            "The create data type in fill_constant must be one of 'bool', float16, float32,"
            "float64, int32 or int64, but received %s." % convert_dtype(
                (dtype)))
Y
Yu Yang 已提交
460
    if out is None:
X
Xin Pan 已提交
461
        out = helper.create_variable_for_type_inference(dtype=dtype)
462 463 464 465 466 467
    else:
        if not (convert_dtype(dtype) == convert_dtype(out.dtype)):
            raise TypeError(
                "The create data type in op must be same with out type"
                "but received %s and out dtype %s." % (convert_dtype(
                    (dtype), convert_dtype(out.dtype))))
Y
Yu Yang 已提交
468 469 470 471
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
472 473 474 475
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
476
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
477 478
        },
        stop_gradient=True)
Y
Yu Yang 已提交
479 480 481 482
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
483
@templatedoc()
Y
Yu Yang 已提交
484 485 486 487 488
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
489
                                  output_dim_idx=0):
490
    """
W
wangchaochaohu 已提交
491 492 493 494 495
    This OP creates a Tesnor accroding the shape and dtype, and initializes the
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
496 497

    Args:
W
wangchaochaohu 已提交
498 499 500 501 502 503 504 505 506 507 508
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
Y
yuyang18 已提交
509 510

    Returns:
W
wangchaochaohu 已提交
511
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
512 513 514 515 516

    Examples:

        .. code-block:: python

517
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
518
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
519
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
520
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
521

522
    """
Y
Yu Yang 已提交
523
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
524
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
540 541 542 543
def argmin(x, axis=0):
    """
    **argmin**

544 545
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
546 547

    Args:
548 549 550 551 552
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
553

S
sneaxiy 已提交
554
    Returns:
555
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
556

S
sneaxiy 已提交
557 558
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
559

560
            import paddle.fluid as fluid
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
588 589
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
590
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
591 592 593 594 595 596 597 598 599 600 601 602
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

603 604
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
605 606

    Args:
607 608 609 610 611
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
612

S
sneaxiy 已提交
613
    Returns:
614
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
615

S
sneaxiy 已提交
616 617
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
618

619
            import paddle.fluid as fluid
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
647 648
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
649
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
650 651 652 653 654 655 656 657
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


658
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
659
    """
660 661 662
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
663 664

    Args:
665 666 667 668 669 670 671 672
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
673 674

    Returns:
675 676 677
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
678 679 680 681

    Examples:
        .. code-block:: python

682
            import paddle.fluid as fluid
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
724 725
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
726 727 728 729
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
730 731 732 733
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
734 735
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
736 737 738
    return out, ids


Y
Yang Yu 已提交
739
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
740
    """
741 742 743 744 745 746 747 748
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
C
chengduozh 已提交
749
        shape(tuple|list): Shape of output tensor
750
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
751 752 753 754 755 756 757

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

758
          import paddle.fluid as fluid
759
          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
760
    """
C
chengduozh 已提交
761 762 763 764
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
765 766 767
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
768
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
769
    """
770 771 772 773 774 775 776 777
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
778 779 780
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
781 782

    Returns:
W
wanghaoshuang 已提交
783
        Variable: The tensor variable storing the output.
784 785 786 787

    Examples:
        .. code-block:: python

788
          import paddle.fluid as fluid
789
          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
790 791
    """
    return fill_constant(value=0.0, **locals())
792 793


F
fengjiayi 已提交
794 795 796 797 798 799 800 801
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
802 803 804
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
805 806 807 808 809 810 811

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

812 813 814
          import paddle.fluid as fluid
          data = fluid.layers.data(name="data", shape=[4, 8], dtype="float32")
          out = fluid.layers.reverse(x=data, axis=0)
F
fengjiayi 已提交
815
          # or:
816
          out = fluid.layers.reverse(x=data, axis=[0,1])
F
fengjiayi 已提交
817 818 819 820
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
821
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
822 823
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
824
        inputs={'X': x},
F
fengjiayi 已提交
825 826 827 828 829
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


830 831 832 833 834 835 836
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
837 838 839
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
855 856
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
857
        file_path(str): The file path where variables will be saved.
858
        overwrite(bool): Whether or not cover the given file when it has already
859 860
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
861 862 863 864 865 866 867 868

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

869
            import paddle.fluid as fluid
870 871 872 873 874 875 876
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
901 902 903 904 905 906 907


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
908
       x (Variable): The Tensor/LoDTensor to be checked.
909 910

    Returns:
911
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
912 913 914 915 916 917 918 919
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

920 921
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
922
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
923 924 925 926 927 928 929 930 931
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
932
       x (Variable): The Tensor/LoDTensor to be checked.
933 934

    Returns:
935
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
936 937 938 939 940 941 942 943
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

944 945
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
946
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
947 948 949 950 951 952 953 954 955 956 957 958 959 960
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
961 962 963 964 965

    Examples:

        .. code-block:: python

966
            import paddle.fluid as fluid
967 968 969
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
970
            out = fluid.layers.isfinite(var)
971 972
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
973
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
974 975
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
976 977 978 979 980 981 982 983 984


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
985 986 987 988
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
989
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
990 991 992
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
993
                                  distance between two adjacent values, out[i+1] - out[i].
L
Liufang Sang 已提交
994
        dtype(str): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
995

L
Liufang Sang 已提交
996 997 998
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
999 1000 1001 1002 1003

    examples:

        .. code-block:: python

1004
             import paddle.fluid as fluid
W
whs 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1025
    out.stop_gradient = True
W
whs 已提交
1026
    return out
Z
zhoukunsheng 已提交
1027 1028


Z
zhoukunsheng 已提交
1029 1030
def linspace(start, stop, num, dtype):
    """
1031
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1032 1033

    Args:
1034 1035 1036 1037 1038 1039 1040
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1041 1042

    Returns:
1043 1044 1045
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1046

Z
zhoukunsheng 已提交
1047
    Examples:
Z
zhoukunsheng 已提交
1048 1049
        .. code-block:: python

1050
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1051 1052
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1073 1074


Z
zhoukunsheng 已提交
1075 1076
def zeros_like(x, out=None):
    """
1077
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1078 1079 1080
    with `x`.

    Args:
1081 1082 1083 1084
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
            The defalut value is :attr:`None` .
Z
zhoukunsheng 已提交
1085 1086

    Returns:
1087 1088
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1089 1090 1091 1092

    Examples:
        .. code-block:: python

1093
          import paddle.fluid as fluid
1094
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1095 1096
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1106 1107 1108 1109


def diag(diagonal):
    """
1110
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1111 1112

    Args:
1113 1114
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1115 1116

    Returns:
1117 1118
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1119 1120 1121 1122 1123 1124 1125

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1126 1127 1128

          import paddle.fluid as fluid
          import numpy as np
1129 1130 1131
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1147 1148


1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1161 1162
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1163 1164

    Returns:
1165
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1166 1167 1168 1169 1170

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1171 1172
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1173
          #  [0, 1, 0]
1174 1175
          #  [0, 0, 1]]

1176
          data = fluid.layers.eye(2, 3, dtype='int32')
1177
          # [[1, 0, 0]
1178
          #  [0, 1, 0]]
1179 1180

          data = fluid.layers.eye(2, batch_shape=[3])
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1233
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out