test_reduce_op.py 19.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
guosheng 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci
20
import paddle
21 22 23
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
24
from paddle.fluid.framework import convert_np_dtype_to_dtype_
G
guosheng 已提交
25 26


27
class TestSumOp(OpTest):
G
guosheng 已提交
28
    def setUp(self):
29
        self.op_type = "reduce_sum"
30
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
31
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestSumOp5D(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((1, 2, 5, 6, 10)).astype("float64")
        }
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestSumOp6D(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((1, 1, 2, 5, 6, 10)).astype("float64")
        }
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
G
guosheng 已提交
62

63 64
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
65

66 67
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
68 69


70 71 72
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
73 74
class TestMaxOp(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
75 76

    def setUp(self):
77
        self.op_type = "reduce_max"
78
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
79 80 81 82
        self.attrs = {'dim': [-1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }
83 84 85

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
86 87


88 89 90
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
91 92
class TestMinOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
93

94 95
    def setUp(self):
        self.op_type = "reduce_min"
96
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
97 98 99 100
        self.attrs = {'dim': [2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
101

102 103
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
104 105


106 107 108 109 110 111 112 113 114 115 116 117 118
class TestProdOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].prod(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


Z
zhoukunsheng 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
class TestAllOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].all()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
        self.check_output()


class TestAllOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1]}
        self.outputs = {'Out': self.inputs['X'].all(axis=1)}

    def test_check_output(self):
        self.check_output()


class TestAllOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].all(axis=1), axis=1)
        }

    def test_check_output(self):
        self.check_output()


155 156 157 158 159 160 161 162 163 164 165 166
class TestAllOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_all_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.reduce_all, input1)
            # The input dtype of reduce_all_op must be bool.
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.reduce_all, input2)


Z
zhoukunsheng 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
class TestAnyOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].any()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
        self.check_output()


class TestAnyOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1]}
        self.outputs = {'Out': self.inputs['X'].any(axis=1)}

    def test_check_output(self):
        self.check_output()


class TestAnyOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].any(axis=1), axis=1)
        }

    def test_check_output(self):
        self.check_output()


203 204 205 206 207 208 209 210 211 212 213 214
class TestAnyOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_any_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.reduce_any, input1)
            # The input dtype of reduce_any_op must be bool.
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.reduce_any, input2)


Q
qiaolongfei 已提交
215
class Test1DReduce(OpTest):
G
guosheng 已提交
216
    def setUp(self):
217
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
218
        self.inputs = {'X': np.random.random(120).astype("float64")}
Q
qiaolongfei 已提交
219
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
220 221 222

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
223

224 225
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
226 227


Q
qiaolongfei 已提交
228
class Test2DReduce0(Test1DReduce):
G
guosheng 已提交
229
    def setUp(self):
230
        self.op_type = "reduce_sum"
Q
qiaolongfei 已提交
231 232
        self.attrs = {'dim': [0]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
233 234 235
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}


Q
qiaolongfei 已提交
236 237 238 239 240
class Test2DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
Q
qiaolongfei 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce0(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce2(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [-2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce3(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1, 2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
284 285


Q
qiaolongfei 已提交
286 287 288 289
class TestKeepDimReduce(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
Q
qiaolongfei 已提交
290
        self.attrs = {'dim': [1], 'keep_dim': True}
Q
qiaolongfei 已提交
291 292 293 294 295 296 297
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=self.attrs['keep_dim'])
        }


class TestReduceAll(Test1DReduce):
298 299
    def setUp(self):
        self.op_type = "reduce_sum"
300
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
301 302 303 304
        self.attrs = {'reduce_all': True}
        self.outputs = {'Out': self.inputs['X'].sum()}


305 306 307
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
class TestReduceMaxOpMultiAxises(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_max"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


323 324 325
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
class TestReduceMinOpMultiAxises(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


class TestKeepDimReduceSumMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1], 'keep_dim': True}
        self.outputs = {
            'Out':
            self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


358 359 360
class TestReduceSumWithDimOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
361
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        self.attrs = {'dim': [1, 2], 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceSumWithNumelOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
378
        self.inputs = {'X': np.random.random((100, 1)).astype("float64")}
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
        self.attrs = {'dim': [1], 'keep_dim': False}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=False)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceAll(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
395
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
396 397 398 399 400 401 402 403 404 405
        self.attrs = {'reduce_all': True, 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum()}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


406 407 408
class Test1DReduceWithAxes1(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
409
        self.inputs = {'X': np.random.random(100).astype("float64")}
410 411 412 413 414 415 416 417 418 419
        self.attrs = {'dim': [0], 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
class TestReduceWithDtype(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum().astype('float64')}
        self.attrs = {'reduce_all': True}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceWithDtype1(TestReduceWithDtype):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=1)}
        self.attrs = {'dim': [1]}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })


class TestReduceWithDtype2(TestReduceWithDtype):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=1, keepdims=True)}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })


462
class TestReduceSumOpError(unittest.TestCase):
463 464 465 466 467 468 469 470 471 472 473
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_sum_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x1)
            # The input dtype of reduce_sum_op  must be float32 or float64 or int32 or int64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x2)


474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
class API_TestSumOpError(unittest.TestCase):
    def test_errors(self):
        def test_dtype1():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data(name="data", shape=[10], dtype="float32")
                paddle.sum(data, dtype="int32")

        self.assertRaises(ValueError, test_dtype1)

        def test_dtype2():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data(name="data", shape=[10], dtype="float32")
                paddle.sum(data, dtype="float32")

        self.assertRaises(ValueError, test_dtype2)

        def test_dtype3():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data(name="data", shape=[10], dtype="int32")
                paddle.sum(data, dtype="bool")

        self.assertRaises(ValueError, test_dtype3)

        def test_dtype4():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data(name="data", shape=[10], dtype="int32")
                paddle.sum(data, dtype="int32")

        self.assertRaises(ValueError, test_dtype3)


class API_TestSumOp(unittest.TestCase):
506
    def test_static(self):
507 508
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.data("data", shape=[10, 10], dtype="float32")
509
            result_sum = paddle.sum(x=data, axis=1, dtype="float64")
510 511 512 513 514 515 516 517 518
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input_data = np.random.rand(10, 10).astype(np.float32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum])
        self.assertEqual(
            (res == np.sum(input_data.astype(np.float64), axis=1)).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.data("data", shape=[10, 10], dtype="int32")
519
            result_sum = paddle.sum(x=data, axis=1, dtype="int64")
520 521 522 523 524 525 526 527 528
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input_data = np.random.randint(10, size=(10, 10)).astype(np.int32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum])
        self.assertEqual(
            (res == np.sum(input_data.astype(np.int64), axis=1)).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.data("data", shape=[10, 10], dtype="int32")
529
            result_sum = paddle.sum(x=data, axis=1)
530 531 532 533 534 535 536 537
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input_data = np.random.randint(10, size=(10, 10)).astype(np.int32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum])
        self.assertEqual((res == np.sum(input_data, axis=1)).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.data("data", shape=[10, 10], dtype="int32")
538
            result_sum = paddle.sum(x=data, axis=1)
539 540 541 542 543 544
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input_data = np.random.randint(10, size=(10, 10)).astype(np.int32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum])
        self.assertEqual((res == np.sum(input_data, axis=1)).all(), True)

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_data = np.random.randint(10, size=(5, 5, 5)).astype(np.int32)
            data = fluid.data("data", shape=[5, 5, 5], dtype="int32")
            sum1 = paddle.sum(x=data, axis=[0, 1])
            sum2 = paddle.sum(x=data, axis=())

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            res1, res2 = exe.run(feed={"data": input_data},
                                 fetch_list=[sum1, sum2])

        self.assertEqual((res1 == np.sum(input_data, axis=(0, 1))).all(), True)
        self.assertEqual(
            (res2 == np.sum(input_data, axis=(0, 1, 2))).all(), True)

    def test_dygraph(self):
        np_x = np.random.random([2, 3, 4]).astype('int32')
562 563
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(np_x)
564 565 566 567 568 569 570 571 572
            out0 = paddle.sum(x).numpy()
            out1 = paddle.sum(x, axis=0).numpy()
            out2 = paddle.sum(x, axis=(0, 1)).numpy()
            out3 = paddle.sum(x, axis=(0, 1, 2)).numpy()

        self.assertTrue((out0 == np.sum(np_x, axis=(0, 1, 2))).all())
        self.assertTrue((out1 == np.sum(np_x, axis=0)).all())
        self.assertTrue((out2 == np.sum(np_x, axis=(0, 1))).all())
        self.assertTrue((out3 == np.sum(np_x, axis=(0, 1, 2))).all())
573 574


G
guosheng 已提交
575 576
if __name__ == '__main__':
    unittest.main()