tensor_py.h 44.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

L
Luo Tao 已提交
17
#include <Python.h>
18

W
wopeizl 已提交
19 20
#include <algorithm>
#include <memory>
Q
qijun 已提交
21
#include <string>
C
chengduoZH 已提交
22
#include <tuple>
23
#include <utility>
C
chengduoZH 已提交
24
#include <vector>
25

26
#include "paddle/fluid/framework/data_type.h"
Y
Yi Wang 已提交
27 28
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
29
#include "paddle/fluid/operators/eigen/eigen_function.h"
W
wopeizl 已提交
30 31
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
32
#include "paddle/fluid/platform/bfloat16.h"
33
#include "paddle/fluid/platform/device/device_wrapper.h"
34
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
35 36
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
37
#include "paddle/fluid/framework/convert_utils.h"
Z
zyfncg 已提交
38
#include "paddle/fluid/framework/eigen.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/platform/device_context.h"
40
#include "paddle/fluid/platform/float16.h"
41
#include "paddle/fluid/platform/profiler/event_tracing.h"
42
#include "paddle/phi/common/pstring.h"
J
Jack Zhou 已提交
43 44
#include "paddle/phi/core/string_tensor.h"
#include "paddle/phi/kernels/strings/unicode.h"
Q
qijun 已提交
45 46
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
47

W
wopeizl 已提交
48 49
namespace py = pybind11;

50 51 52 53 54 55 56
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;
57
constexpr int NPY_UINT16_ = 4;
58 59
constexpr int NPY_COMPLEX64 = 14;
constexpr int NPY_COMPLEX128 = 15;
60

W
wanghuancoder 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
// cast numpy type form S to T, this may allocate new memory
template <class T, class S>
static py::array_t<T> CastNumpyType(py::array_t<S> array) {
  if (std::is_same<T, S>::value) {
    return array;
  }
  auto dim = array.ndim();
  std::vector<py::ssize_t> result_shape(dim);
  for (auto i = 0; i < dim; i++) {
    result_shape[i] = array.shape(i);
  }

  py::array_t<T> result(result_shape);

  return py::vectorize([](S s) { return static_cast<T>(s); })(array);
}

template <class T>
static py::array_t<T> CastNumpyArray(const py::object &array) {
  if (py::isinstance<py::array_t<float>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<float>>());
  } else if (py::isinstance<py::array_t<double>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<double>>());
  } else if (py::isinstance<py::array_t<int32_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int32_t>>());
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int64_t>>());
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<bool>>());
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Value type error. The assign numpy value allows integer, float, "
        "double and bool, "
        "but received %s.",
        Py_TYPE(array.ptr())->tp_name));
  }
  // can't reach here
  return py::array_t<T>();
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
struct npy_format_descriptor<paddle::platform::float16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
116
  static constexpr auto name = _("float16");
117 118
};

119 120 121 122 123 124 125 126 127 128 129 130 131 132
// Note: Since bfloat16 is not a builtin type in C++ and in numpy,
// we register paddle::platform::bfloat16 as numpy.uint16.
template <>
struct npy_format_descriptor<paddle::platform::bfloat16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_UINT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "H" represents UINT16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "H";
  }
133
  static constexpr auto name = _("bfloat16");
134 135
};

136
// we register paddle::platform::complex<float> as numpy.complex64.
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
template <>
struct npy_format_descriptor<paddle::platform::complex<float>> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX64);
    return reinterpret_borrow<py::dtype>(ptr);
  }

  static std::string format() {
    // Note: "F" represents complex64.
    // Details at:
    // https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
    // for k, v in np.sctypeDict.iteritems():
    //     print '{0:14s} : {1:40s}'.format(str(k), v)
    return "F";
  }
  static constexpr auto name = _("complext64");
};

template <>
struct npy_format_descriptor<paddle::platform::complex<double>> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX128);
    return reinterpret_borrow<py::dtype>(ptr);
  }

  static std::string format() {
    // Note: "D" represents complex128.
    // Details at:
    // https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
    // for k, v in np.sctypeDict.iteritems():
    //     print '{0:14s} : {1:40s}'.format(str(k), v)
    return "D";
  }
  static constexpr auto name = _("complext128");
};

173 174 175
}  // namespace detail
}  // namespace pybind11

176
namespace paddle {
177
namespace pybind {
178

179 180
namespace details {

181 182 183 184
template <typename T>
class PYBIND11_HIDDEN NumpyAllocation : public memory::Allocation {
 public:
  explicit NumpyAllocation(const py::array &arr)
185 186
      : Allocation(const_cast<void *>(arr.data()),
                   sizeof(T) * (arr.size()),
187 188
                   paddle::platform::CPUPlace()),
        arr_(arr.ptr()) {
189 190 191 192
    PADDLE_ENFORCE_NOT_NULL(
        arr_,
        platform::errors::InvalidArgument("The underlying PyObject pointer of "
                                          "numpy array cannot be nullptr"));
193
    PADDLE_ENFORCE_NE(
194 195
        arr_,
        Py_None,
196 197 198 199 200 201 202 203 204 205 206 207 208
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~NumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject *arr_;
};

209 210 211 212 213 214 215 216 217 218 219 220
template <typename T>
struct ValidDTypeToPyArrayChecker {
  static constexpr bool kValue = false;
};

#define DECLARE_VALID_DTYPE_TO_PY_ARRAY(type) \
  template <>                                 \
  struct ValidDTypeToPyArrayChecker<type> {   \
    static constexpr bool kValue = true;      \
  }

DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::float16);
221
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::bfloat16);
222 223
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<float>);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<double>);
224 225 226 227
DECLARE_VALID_DTYPE_TO_PY_ARRAY(float);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(double);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(bool);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int8_t);
L
Leo Chen 已提交
228
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int16_t);
229 230
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int64_t);
L
Leo Chen 已提交
231
DECLARE_VALID_DTYPE_TO_PY_ARRAY(uint8_t);
232 233 234 235 236 237 238

inline std::string TensorDTypeToPyDTypeStr(
    framework::proto::VarType::Type type) {
#define TENSOR_DTYPE_TO_PY_DTYPE(T, proto_type)                             \
  if (type == proto_type) {                                                 \
    if (std::is_same<T, platform::float16>::value) {                        \
      return "e";                                                           \
239 240 241
    } else if (std::is_same<T, platform::bfloat16>::value) {                \
      /* NumPy character code of uint16 due to no support for bfloat16 */   \
      return "H";                                                           \
242 243 244 245
    } else if (std::is_same<T, platform::complex<float>>::value) {          \
      return "F";                                                           \
    } else if (std::is_same<T, platform::complex<double>>::value) {         \
      return "D";                                                           \
246 247
    } else {                                                                \
      constexpr auto kIsValidDType = ValidDTypeToPyArrayChecker<T>::kValue; \
248
      PADDLE_ENFORCE_EQ(                                                    \
249 250
          kIsValidDType,                                                    \
          true,                                                             \
251 252 253
          platform::errors::Unimplemented(                                  \
              "This type [%s] of tensor cannot be expose to Python",        \
              typeid(T).name()));                                           \
254 255 256 257 258 259
      return py::format_descriptor<T>::format();                            \
    }                                                                       \
  }

  _ForEachDataType_(TENSOR_DTYPE_TO_PY_DTYPE);
#undef TENSOR_DTYPE_TO_PY_DTYPE
260 261
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", framework::DataTypeToString(type)));
262 263 264 265
}

}  // namespace details

266
template <typename T>
267
T TensorGetElement(const framework::Tensor &self, size_t offset) {
268 269
  PADDLE_ENFORCE_LT(offset,
                    self.numel(),
270 271
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
272

Q
qingqing01 已提交
273
  T b = static_cast<T>(0);
274
  if (platform::is_cpu_place(self.place())) {
Q
qingqing01 已提交
275
    b = self.data<T>()[offset];
276 277 278
  } else if (platform::is_xpu_place(self.place())) {
#ifdef PADDLE_WITH_XPU
    const T *a = self.data<T>();
279
    auto p = self.place();
280 281 282
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T));
#endif
  } else if (platform::is_gpu_place(self.place())) {
283
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
284
    const T *a = self.data<T>();
285
    auto p = self.place();
286 287
    paddle::memory::Copy(
        platform::CPUPlace(), &b, p, a + offset, sizeof(T), nullptr);
288 289 290 291
#endif
  } else if (platform::is_mlu_place(self.place())) {
#ifdef PADDLE_WITH_MLU
    const T *a = self.data<T>();
292
    auto p = self.place();
293 294
    paddle::memory::Copy(
        platform::CPUPlace(), &b, p, a + offset, sizeof(T), nullptr);
295 296 297 298
#endif
  } else if (platform::is_npu_place(self.place())) {
#if defined(PADDLE_WITH_ASCEND_CL)
    const T *a = self.data<T>();
299
    auto p = self.place();
300 301
    paddle::memory::Copy(
        platform::CPUPlace(), &b, p, a + offset, sizeof(T), nullptr);
302 303 304 305 306
#endif
  } else if (platform::is_custom_place(self.place())) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    const T *a = self.data<T>();
    auto p = self.place();
307 308
    paddle::memory::Copy(
        platform::CPUPlace(), &b, p, a + offset, sizeof(T), nullptr);
Q
qingqing01 已提交
309
#endif
310
  }
311 312
  VLOG(10) << "TensorGetElement, place: " << self.place()
           << ", offset: " << offset << ", element: " << b;
Q
qingqing01 已提交
313
  return b;
314 315 316
}

template <typename T>
317
void TensorSetElement(framework::Tensor *self, size_t offset, T elem) {
318 319
  PADDLE_ENFORCE_LT(offset,
                    self->numel(),
320 321
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
322 323
  VLOG(10) << "TensorSetElement, place: " << self->place()
           << ", offset: " << offset << ", element: " << elem;
Q
qingqing01 已提交
324
  if (platform::is_cpu_place(self->place())) {
Y
Yu Yang 已提交
325
    self->mutable_data<T>(self->place())[offset] = elem;
326 327
  } else if (platform::is_xpu_place(self->place())) {
#ifdef PADDLE_WITH_XPU
328
    auto p = self->place();
329 330 331 332
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T));
#endif
  } else if (platform::is_gpu_place(self->place())) {
333
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
334
    auto p = self->place();
Q
qingqing01 已提交
335
    T *a = self->mutable_data<T>(p);
336 337
    paddle::memory::Copy(
        p, a + offset, platform::CPUPlace(), &elem, sizeof(T), nullptr);
338 339 340
#endif
  } else if (platform::is_mlu_place(self->place())) {
#ifdef PADDLE_WITH_MLU
341
    auto p = self->place();
342
    T *a = self->mutable_data<T>(p);
343 344
    paddle::memory::Copy(
        p, a + offset, platform::CPUPlace(), &elem, sizeof(T), nullptr);
345 346 347
#endif
  } else if (platform::is_npu_place(self->place())) {
#if defined(PADDLE_WITH_ASCEND_CL)
348
    auto p = self->place();
349
    T *a = self->mutable_data<T>(p);
350 351
    paddle::memory::Copy(
        p, a + offset, platform::CPUPlace(), &elem, sizeof(T), nullptr);
352 353 354 355 356
#endif
  } else if (platform::is_custom_place(self->place())) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    auto p = self->place();
    T *a = self->mutable_data<T>(p);
357 358
    paddle::memory::Copy(
        p, a + offset, platform::CPUPlace(), &elem, sizeof(T), nullptr);
Q
qingqing01 已提交
359
#endif
360
  }
361 362
}

363 364 365
template <typename T, typename P>
void SetTensorFromPyArrayT(
    framework::Tensor *self,
366
    const py::array_t<T, py::array::c_style | py::array::forcecast> &array,
367 368
    const P &place,
    bool zero_copy) {
369 370 371
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
372
    dims.push_back(static_cast<int64_t>(array.shape()[i]));
373
  }
374
  self->Resize(phi::make_ddim(dims));
375 376

  if (paddle::platform::is_cpu_place(place)) {
377 378 379
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
380
      self->ResetHolderWithType(holder, framework::TransToPhiDataType(type));
381 382 383 384
    } else {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
    }
385 386
  } else if (paddle::platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
W
WangXi 已提交
387 388 389
    // NOTE(wangxi): When copying data to the accelerator card,
    // we need set_device(dev_id) first.
    platform::Place tmp_place = place;
390
    platform::XPUDeviceGuard guard(tmp_place.device);
391
    auto dst = self->mutable_data<T>(place);
392 393 394 395 396
    memory::Copy(tmp_place,
                 static_cast<void *>(dst),
                 platform::CPUPlace(),
                 static_cast<const void *>(array.data()),
                 array.nbytes());
397 398 399 400
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
J
jianghaicheng 已提交
401 402 403 404 405 406
#endif
  } else if (paddle::platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
407
      self->ResetHolderWithType(holder, framework::TransToPhiDataType(type));
J
jianghaicheng 已提交
408
    } else {
409 410 411 412 413 414 415 416
      // IPU does not store Tensor data, Tensor will be created on CPU
      if (!self->initialized()) {
        auto dst = self->mutable_data<T>(place);
        std::memcpy(dst, array.data(), array.nbytes());
      } else {
        auto dst = self->mutable_data<T>(self->place());
        std::memcpy(dst, array.data(), array.nbytes());
      }
J
jianghaicheng 已提交
417 418 419 420 421
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use IPUPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with IPU support."));
422 423 424 425
#endif
  } else if (paddle::platform::is_npu_place(place)) {
#ifdef PADDLE_WITH_ASCEND_CL
    platform::Place tmp_place = place;
426
    platform::NPUDeviceGuard guard(tmp_place.device);
427
    auto dst = self->mutable_data<T>(place);
428 429
    platform::NPUMemcpySync(
        dst, array.data(), array.nbytes(), ACL_MEMCPY_HOST_TO_DEVICE);
430 431 432 433 434 435 436
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(place);
    ctx.Wait();
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use NPUPlace in CPU/GPU/XPU version. "
        "Please recompile or reinstall Paddle with NPU support."));
437 438 439 440
#endif
  } else if (paddle::platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
    platform::Place tmp_place = place;
441
    platform::MLUDeviceGuard guard(tmp_place.device);
442
    auto dst = self->mutable_data<T>(place);
F
fwenguang 已提交
443 444 445 446 447
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto dev_ctx = static_cast<platform::MLUDeviceContext *>(pool.Get(place));
    paddle::platform::MLUMemcpyH2DAsync(
        dst, array.data(), array.nbytes(), dev_ctx->stream());
    dev_ctx->Wait();
448 449 450 451
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use MLUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with MLU support."));
452 453 454 455
#endif
  } else if (paddle::platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    platform::Place tmp_place = place;
456
    phi::DeviceGuard guard(tmp_place);
457 458
    auto dst = self->mutable_data<T>(place);

459
    phi::DeviceManager::GetDeviceWithPlace(tmp_place)->MemoryCopyH2D(
460 461 462 463 464 465 466 467 468 469
        reinterpret_cast<void *>(dst),
        const_cast<void *>(reinterpret_cast<const void *>(array.data())),
        array.nbytes());
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(place);
    ctx.Wait();
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CustomDevice in CPU/GPU/XPU version. "
        "Please recompile or reinstall Paddle with CustomDevice support."));
470
#endif
471
  } else {
472
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
473
    if (paddle::platform::is_gpu_place(place)) {
W
WangXi 已提交
474 475
      // NOTE(wangxi): When copying data to the accelerator card,
      // we need set_device(dev_id) first.
476
      platform::CUDADeviceGuard guard(place.device);
477
      auto dst = self->mutable_data<T>(place);
478
#ifdef PADDLE_WITH_HIP
479 480
      paddle::platform::GpuMemcpySync(
          dst, array.data(), array.nbytes(), hipMemcpyHostToDevice);
481
#else
482 483
      paddle::platform::GpuMemcpySync(
          dst, array.data(), array.nbytes(), cudaMemcpyHostToDevice);
484
#endif
485

486 487 488
    } else if (paddle::platform::is_cuda_pinned_place(place)) {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
489
    } else {
490 491 492
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible place type: Tensor.set() supports "
          "CPUPlace, CUDAPlace "
493
          "and CUDAPinnedPlace, but got %s!",
494
          place));
495 496
    }
#else
497
    PADDLE_THROW(platform::errors::PermissionDenied(
498
        "Cannot use CUDAPlace or CUDAPinnedPlace in CPU only version, "
499
        "Please recompile or reinstall Paddle with CUDA support."));
500 501 502 503 504
#endif
  }
}

template <typename P>
505 506 507 508
void SetTensorFromPyArray(framework::Tensor *self,
                          const py::object &obj,
                          const P &place,
                          bool zero_copy) {
509
  auto array = obj.cast<py::array>();
510
  if (py::isinstance<py::array_t<float>>(array)) {
511
    SetTensorFromPyArrayT<float, P>(self, array, place, zero_copy);
512
  } else if (py::isinstance<py::array_t<int>>(array)) {
513
    SetTensorFromPyArrayT<int, P>(self, array, place, zero_copy);
514
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
515
    SetTensorFromPyArrayT<int64_t, P>(self, array, place, zero_copy);
516
  } else if (py::isinstance<py::array_t<double>>(array)) {
517
    SetTensorFromPyArrayT<double, P>(self, array, place, zero_copy);
518
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
519
    SetTensorFromPyArrayT<int8_t, P>(self, array, place, zero_copy);
L
Leo Chen 已提交
520 521
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetTensorFromPyArrayT<int16_t, P>(self, array, place, zero_copy);
522
  } else if (py::isinstance<py::array_t<uint8_t>>(array)) {
523
    SetTensorFromPyArrayT<uint8_t, P>(self, array, place, zero_copy);
524
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
525 526
    SetTensorFromPyArrayT<paddle::platform::float16, P>(
        self, array, place, zero_copy);
527 528 529 530 531 532 533 534
  } else if (py::isinstance<py::array_t<paddle::platform::complex<float>>>(
                 array)) {
    SetTensorFromPyArrayT<paddle::platform::complex<float>, P>(
        self, array, place, zero_copy);
  } else if (py::isinstance<py::array_t<paddle::platform::complex<double>>>(
                 array)) {
    SetTensorFromPyArrayT<paddle::platform::complex<double>, P>(
        self, array, place, zero_copy);
535
  } else if (py::isinstance<py::array_t<uint16_t>>(array)) {
536 537
    // since there is still no support for bfloat16 in NumPy,
    // uint16 is used for casting bfloat16
538 539
    SetTensorFromPyArrayT<paddle::platform::bfloat16, P>(
        self, array, place, zero_copy);
540
  } else if (py::isinstance<py::array_t<bool>>(array)) {
541
    SetTensorFromPyArrayT<bool, P>(self, array, place, zero_copy);
542
  } else {
543 544
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning,
545
    PADDLE_THROW(platform::errors::InvalidArgument(
546 547 548 549
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64, uint8 or uint16, "
        "please check your input or input array data type."));
550 551 552
  }
}

J
Jack Zhou 已提交
553
template <typename P>
554 555
void SetStringTensorFromPyArray(phi::StringTensor *self,
                                const py::array &array,
J
Jack Zhou 已提交
556 557 558
                                const P &place) {
  bool is_string_pyarray =
      array.dtype().kind() == 'S' || array.dtype().kind() == 'U';
559 560
  PADDLE_ENFORCE_EQ(is_string_pyarray,
                    true,
J
Jack Zhou 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
                    platform::errors::InvalidArgument(
                        "Expect the dtype of numpy array is string or "
                        "unicode, but recevie dtype %s",
                        array.dtype()));
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.push_back(static_cast<int>(array.shape()[i]));
  }
  self->Resize(phi::make_ddim(dims));
  auto itemsize = array.itemsize();
  if (paddle::platform::is_cpu_place(place)) {
    auto dst = self->mutable_data(place);
    if (array.dtype().kind() == 'S') {
      for (int i = 0; i < self->numel(); ++i) {
        dst[i] =
            pstring(reinterpret_cast<const char *>(array.data()) + itemsize * i,
                    itemsize);
      }
    } else {
      // array.dtype().kind() == 'U'
      VLOG(6) << "numpy array itemsize: " << itemsize;
      for (int i = 0; i < self->numel(); ++i) {
        // Note(zhoushunjie): The itemsize of unicode numpy array is the
        // the size of each unicode string. Each unicode string is aligned
        // to max length of the array of unicode strings, so the size of
        // each unicode string is same. The size of each unicode character is
        // 4, so the size of unicode string is 4 times of the length of
        // unicode string.
        auto unicode_len = itemsize / 4;
        auto utf8_len = phi::strings::GetUTF8StrLen(
            reinterpret_cast<const uint32_t *>(array.data()) + unicode_len * i,
            unicode_len);
        pstring pstr(utf8_len - 1, 0);
        phi::strings::GetUTF8Str(
            reinterpret_cast<const uint32_t *>(array.data()) + unicode_len * i,
598 599
            pstr.mdata(),
            unicode_len);
J
Jack Zhou 已提交
600 601 602 603 604 605 606 607 608 609
        dst[i] = pstr;
      }
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor only support CPUPlace now, but receive %s",
        place.DebugString()));
  }
}

S
Siming Dai 已提交
610
template <typename T>
611
void SetUVATensorFromPyArrayImpl(framework::LoDTensor *self_tensor,
612 613
                                 const py::array_t<T> &array,
                                 int device_id) {
S
Siming Dai 已提交
614
#if defined(PADDLE_WITH_CUDA)
615
  VLOG(4) << "Running in SetUVATensorFromPyArrayImpl.";
S
Siming Dai 已提交
616 617 618 619
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  int64_t numel = 1;
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
620 621
    dims.emplace_back(static_cast<int64_t>(array.shape()[i]));
    numel *= static_cast<int64_t>(array.shape()[i]);
S
Siming Dai 已提交
622
  }
623
  self_tensor->Resize(phi::make_ddim(dims));
S
Siming Dai 已提交
624 625 626 627

  auto data_type = framework::ToDataType(std::type_index(typeid(T)));
  const auto &need_allocate_size = numel * framework::SizeOfType(data_type);
  T *data_ptr;
628 629
  cudaHostAlloc(reinterpret_cast<void **>(&data_ptr),
                need_allocate_size,
S
Siming Dai 已提交
630 631 632 633 634
                cudaHostAllocWriteCombined | cudaHostAllocMapped);
  std::memcpy(data_ptr, array.data(), array.nbytes());

  void *cuda_device_pointer = nullptr;
  cudaHostGetDevicePointer(reinterpret_cast<void **>(&cuda_device_pointer),
635 636
                           reinterpret_cast<void *>(data_ptr),
                           0);
S
Siming Dai 已提交
637 638
  std::shared_ptr<memory::allocation::Allocation> holder =
      std::make_shared<memory::allocation::Allocation>(
639 640
          cuda_device_pointer,
          need_allocate_size,
S
Siming Dai 已提交
641
          platform::CUDAPlace(device_id));
642
  self_tensor->ResetHolderWithType(holder,
643
                                   framework::TransToPhiDataType(data_type));
S
Siming Dai 已提交
644 645 646
#endif
}

647 648 649
template <typename T>
void SetUVATensorFromPyArray(
    const std::shared_ptr<paddle::imperative::VarBase> &self,
650 651
    const py::array_t<T> &array,
    int device_id) {
652 653 654 655 656 657 658 659 660 661
#if defined(PADDLE_WITH_CUDA)
  VLOG(4) << "Running in SetUVATensorFromPyArray for VarBase.";
  auto *self_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  SetUVATensorFromPyArrayImpl<T>(self_tensor, array, device_id);
#endif
}

template <typename T>
void SetUVATensorFromPyArray(
    const std::shared_ptr<paddle::experimental::Tensor> &self,
662 663
    const py::array_t<T> &array,
    int device_id) {
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
#if defined(PADDLE_WITH_CUDA)
  VLOG(4) << "Running in SetUVATensorFromPyArray for Phi::Tensor.";
  phi::DenseTensorMeta meta =
      phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({1, 1}));
  std::shared_ptr<phi::DenseTensor> tmp_t = std::make_shared<phi::DenseTensor>(
      std::make_unique<paddle::experimental::DefaultAllocator>(
          paddle::platform::CPUPlace())
          .get(),
      meta);
  self.get()->set_impl(tmp_t);
  auto *self_tensor =
      static_cast<paddle::framework::LoDTensor *>(self.get()->impl().get());

  SetUVATensorFromPyArrayImpl<T>(self_tensor, array, device_id);
#endif
}

W
wopeizl 已提交
681
template <typename T, size_t D>
682 683
void _sliceCompute(const framework::Tensor *in,
                   framework::Tensor *out,
L
Leo Chen 已提交
684
                   const phi::CPUContext &ctx,
W
wopeizl 已提交
685 686 687 688 689 690
                   const std::vector<int> &axes,
                   const std::vector<int> &starts) {
  auto &eigen_place = *ctx.eigen_device();
  auto out_dims = out->dims();
  auto in_dims = in->dims();

691 692
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
W
wopeizl 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = out_dims[i];
  }
  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *in);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out);
712 713
  operators::EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
      eigen_place, out_t, in_t, offsets, extents);
W
wopeizl 已提交
714 715 716 717 718
}

template <typename T>
void _concatCompute(const std::vector<paddle::framework::Tensor> &ins,
                    paddle::framework::Tensor *out,
L
Leo Chen 已提交
719
                    const phi::CPUContext &ctx,
720
                    int64_t axis) {
W
wopeizl 已提交
721 722 723
  if (axis == 0 && ins.size() < 10) {
    size_t output_offset = 0;
    for (auto &in : ins) {
724 725
      auto in_stride = phi::stride_numel(in.dims());
      auto out_stride = phi::stride_numel(out->dims());
W
wopeizl 已提交
726
      paddle::operators::StridedNumelCopyWithAxis<T>(
727 728 729 730 731 732 733
          ctx,
          axis,
          out->data<T>() + output_offset,
          out_stride,
          in.data<T>(),
          in_stride,
          in_stride[axis]);
W
wopeizl 已提交
734 735 736
      output_offset += in_stride[axis];
    }
  } else {
L
Leo Chen 已提交
737
    paddle::operators::math::ConcatFunctor<phi::CPUContext, T> concat_functor;
W
wopeizl 已提交
738 739 740 741
    concat_functor(ctx, ins, static_cast<int>(axis), out);
  }
}

742 743 744 745 746 747 748
inline void _getSliceinfo(const framework::Tensor &self,
                          py::object obj,
                          const int64_t dim,
                          int64_t *pstart,
                          int64_t *pstop,
                          int64_t *pstep,
                          int64_t *pslicelength) {
W
wopeizl 已提交
749 750 751 752 753
  auto &start = *pstart;
  auto &stop = *pstop;
  auto &step = *pstep;
  auto &slicelength = *pslicelength;
  const framework::DDim &srcDDim = self.dims();
Z
zyfncg 已提交
754 755 756 757
  PADDLE_ENFORCE(
      0 <= dim && dim < srcDDim.size(),
      platform::errors::OutOfRange("The dim %d of slice is out of bounds, it "
                                   "shound be in the range of [0, %d).",
758 759
                                   dim,
                                   srcDDim.size()));
Z
zyfncg 已提交
760

W
wopeizl 已提交
761 762 763 764
  if (py::isinstance<py::slice>(obj)) {
    size_t lstart, lstop, lstep, lslicelength;
    py::slice s = static_cast<py::slice>(obj);
    if (!s.compute(srcDDim[dim], &lstart, &lstop, &lstep, &lslicelength)) {
Z
zyfncg 已提交
765 766 767 768
      PADDLE_THROW(platform::errors::OutOfRange(
          "Slice on dim: %d is error, please check the validity of tensor "
          "dims or slice item.",
          dim));
W
wopeizl 已提交
769 770 771 772 773 774 775
    }
    start = static_cast<int64_t>(lstart);
    stop = static_cast<int64_t>(lstop);
    step = static_cast<int64_t>(lstep);
    slicelength = static_cast<int64_t>(lslicelength);
  } else if (py::isinstance<py::int_>(obj)) {
    start = static_cast<int64_t>(static_cast<py::int_>(obj));
Z
zyfncg 已提交
776 777 778 779
    PADDLE_ENFORCE(
        std::abs(start) < srcDDim[dim],
        platform::errors::OutOfRange("The start %d of slice is out of bounds, "
                                     "it shound be in the range of (%d, %d).",
780 781 782
                                     start,
                                     -srcDDim[dim],
                                     srcDDim[dim]));
W
wopeizl 已提交
783 784 785 786 787
    start = (start >= 0) ? start : srcDDim[dim] - start;
    stop = start + 1;
    step = 1;
    slicelength = 1;
  } else {
Z
zyfncg 已提交
788 789 790
    PADDLE_THROW(
        platform::errors::OutOfRange("Index object error, the index object for "
                                     "slice only supports slice(::) and int."));
W
wopeizl 已提交
791 792 793 794 795 796 797 798 799
  }
}

inline framework::Tensor *_getTensor(const framework::Tensor &self,
                                     const framework::DDim &ddim) {
  framework::Tensor *output = new framework::Tensor();
  output->Resize(ddim);
  auto place = self.place();
  if (platform::is_cpu_place(place)) {
800
    output->mutable_data(place, self.dtype());
801 802
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
803
    output->mutable_data(place, self.dtype());
804 805 806
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
807
    output->mutable_data(place, self.dtype());
808
#endif
W
wopeizl 已提交
809
  } else {
810
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
wopeizl 已提交
811
    if (platform::is_cuda_pinned_place(place)) {
812
      output->mutable_data(place, self.dtype());
W
wopeizl 已提交
813
    } else if ((platform::is_gpu_place(place))) {
814
      output->mutable_data(place, self.dtype());
W
wopeizl 已提交
815 816 817 818 819 820 821
    }
#endif
  }
  return output;
}

template <typename T>
822 823
void _sliceDapper(const framework::Tensor *in,
                  framework::Tensor *out,
L
Leo Chen 已提交
824
                  const phi::CPUContext &ctx,
825 826
                  const std::vector<int> &axes,
                  const std::vector<int> &starts,
W
wopeizl 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
                  int size) {
  switch (size) {
    case 1:
      _sliceCompute<T, 1>(in, out, ctx, axes, starts);
      break;
    case 2:
      _sliceCompute<T, 2>(in, out, ctx, axes, starts);
      break;
    case 3:
      _sliceCompute<T, 3>(in, out, ctx, axes, starts);
      break;
    case 4:
      _sliceCompute<T, 4>(in, out, ctx, axes, starts);
      break;
    case 5:
      _sliceCompute<T, 5>(in, out, ctx, axes, starts);
      break;
    case 6:
      _sliceCompute<T, 6>(in, out, ctx, axes, starts);
      break;
    case 7:
      _sliceCompute<T, 7>(in, out, ctx, axes, starts);
      break;
    case 8:
      _sliceCompute<T, 8>(in, out, ctx, axes, starts);
      break;
    case 9:
      _sliceCompute<T, 9>(in, out, ctx, axes, starts);
      break;
    default:
857 858
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The dim size should be 1 to 9, current is %d", size));
W
wopeizl 已提交
859 860 861 862 863 864
      break;
  }
}

template <typename T>
inline framework::Tensor *_sliceWrapper(const framework::Tensor &self,
L
Leo Chen 已提交
865
                                        const phi::CPUContext &ctx,
866 867 868
                                        py::object obj,
                                        int dim,
                                        int64_t start,
W
wopeizl 已提交
869 870 871 872 873 874 875 876 877 878 879 880
                                        int64_t slicelength) {
  framework::DDim dstDDim = self.dims();
  dstDDim[dim] = static_cast<int64_t>(slicelength);
  std::vector<int> axes({dim});
  std::vector<int> starts({static_cast<int>(start)});
  framework::Tensor *output = _getTensor(self, dstDDim);
  _sliceDapper<T>(&self, output, ctx, axes, starts, dstDDim.size());
  return output;
}

template <typename T>
inline framework::Tensor *_sliceAndConcat(const framework::Tensor &self,
881 882
                                          py::object obj,
                                          int dim) {
L
Leo Chen 已提交
883
  phi::CPUContext ctx;
W
wopeizl 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
  int64_t start, stop, step, slicelength;
  _getSliceinfo(self, obj, dim, &start, &stop, &step, &slicelength);
  if (step == 1 || slicelength == 1) {
    return _sliceWrapper<T>(self, ctx, obj, dim, start, slicelength);
  } else {
    std::vector<framework::Tensor> ins;
    for (auto i = 0; i < slicelength; ++i, start += step) {
      ins.emplace_back(*_sliceWrapper<T>(self, ctx, obj, dim, start, 1));
    }

    // do the concat operation
    framework::DDim dstDDim = self.dims();
    dstDDim[dim] = static_cast<int64_t>(slicelength);
    framework::Tensor *output1 = _getTensor(self, dstDDim);
    _concatCompute<T>(ins, output1, ctx, dim);
    return output1;
  }
}

inline framework::Tensor *_sliceTensor(const framework::Tensor &self,
904 905
                                       py::object obj,
                                       int dim) {
906
  auto src_type = framework::TransToProtoVarType(self.dtype());
W
wopeizl 已提交
907 908 909
  switch (src_type) {
    case framework::proto::VarType::FP16:
      return _sliceAndConcat<paddle::platform::float16>(self, obj, dim);
910 911
    case framework::proto::VarType::BF16:
      return _sliceAndConcat<paddle::platform::bfloat16>(self, obj, dim);
912
    case framework::proto::VarType::COMPLEX64:
913
      return _sliceAndConcat<paddle::platform::complex<float>>(self, obj, dim);
914
    case framework::proto::VarType::COMPLEX128:
915
      return _sliceAndConcat<paddle::platform::complex<double>>(self, obj, dim);
W
wopeizl 已提交
916 917 918 919
    case framework::proto::VarType::FP32:
      return _sliceAndConcat<float>(self, obj, dim);
    case framework::proto::VarType::FP64:
      return _sliceAndConcat<double>(self, obj, dim);
L
Leo Chen 已提交
920 921 922 923
    case framework::proto::VarType::INT8:
      return _sliceAndConcat<int8_t>(self, obj, dim);
    case framework::proto::VarType::INT16:
      return _sliceAndConcat<int16_t>(self, obj, dim);
W
wopeizl 已提交
924 925 926 927 928 929 930
    case framework::proto::VarType::INT32:
      return _sliceAndConcat<int>(self, obj, dim);
    case framework::proto::VarType::INT64:
      return _sliceAndConcat<int64_t>(self, obj, dim);
    case framework::proto::VarType::BOOL:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::UINT8:
L
Leo Chen 已提交
931
      return _sliceAndConcat<uint8_t>(self, obj, dim);
W
wopeizl 已提交
932
    default:
933 934 935
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Not support tensor type: %s",
          framework::DataTypeToString(src_type)));
W
wopeizl 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
  }
}

inline framework::Tensor *_pySliceTensor(const framework::Tensor &self,
                                         py::object obj) {
  if (py::isinstance<py::tuple>(obj)) {
    py::list l = static_cast<py::list>(obj);
    std::unique_ptr<framework::Tensor> target;
    framework::Tensor *src = const_cast<framework::Tensor *>(&self);
    for (auto i = 0; i < static_cast<int>(l.size()); ++i) {
      src = _sliceTensor(*src, l[i], i);
      if (i + 1 == static_cast<int>(l.size())) {
        return src;
      } else {
        target.reset(src);
      }
    }
    return nullptr;
  } else {
    return _sliceTensor(self, obj, 0);
  }
}

inline framework::Tensor *PySliceTensor(const framework::Tensor &self,
                                        py::object obj) {
  if (platform::is_gpu_place(self.place())) {
    std::unique_ptr<framework::Tensor> holder;
    framework::Tensor src;
    framework::TensorCopySync(self, platform::CPUPlace(), &src);
    framework::Tensor *output = _pySliceTensor(src, obj);
    holder.reset(output);
    framework::Tensor *dst = _getTensor(*output, output->dims());
    framework::TensorCopySync(*output, self.place(), dst);
    return dst;
  } else {
    return _pySliceTensor(self, obj);
  }
}

975 976
inline py::array TensorToPyArray(const framework::Tensor &tensor,
                                 bool need_deep_copy = false) {
Q
qingqing01 已提交
977 978 979
  if (!tensor.IsInitialized()) {
    return py::array();
  }
980
  bool is_gpu_tensor = platform::is_gpu_place(tensor.place());
981
  bool is_xpu_tensor = platform::is_xpu_place(tensor.place());
982
  bool is_npu_tensor = platform::is_npu_place(tensor.place());
983
  bool is_mlu_tensor = platform::is_mlu_place(tensor.place());
984
  bool is_custom_device_tensor = platform::is_custom_place(tensor.place());
985
  const auto &tensor_dims = tensor.dims();
986
  auto tensor_dtype = framework::TransToProtoVarType(tensor.dtype());
987 988 989 990 991 992 993
  size_t sizeof_dtype = framework::SizeOfType(tensor_dtype);

  std::vector<size_t> py_dims(tensor_dims.size());
  std::vector<size_t> py_strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
994
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
995 996 997 998
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }

999
  const void *tensor_buf_ptr = tensor.data();
1000

1001 1002
  std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(
      framework::TransToProtoVarType(tensor.dtype()));
1003

1004 1005
  if (!is_gpu_tensor && !is_xpu_tensor && !is_npu_tensor && !is_mlu_tensor &&
      !is_custom_device_tensor) {
1006
    if (!need_deep_copy) {
1007
      auto base = py::cast(std::move(tensor));
1008 1009 1010 1011 1012
      return py::array(py::dtype(py_dtype_str.c_str()),
                       py_dims,
                       py_strides,
                       const_cast<void *>(tensor_buf_ptr),
                       base);
1013 1014
    } else {
      py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1015
      PADDLE_ENFORCE_EQ(
1016 1017
          py_arr.writeable(),
          true,
1018 1019 1020 1021
          platform::errors::InvalidArgument(
              "PyArray is not writable, in which case memory leak "
              "or double free would occur"));
      PADDLE_ENFORCE_EQ(
1022 1023
          py_arr.owndata(),
          true,
1024 1025 1026
          platform::errors::InvalidArgument(
              "PyArray does not own data, in which case  memory leak "
              "or double free would occur"));
1027 1028
      platform::CPUPlace place;
      size_t copy_bytes = sizeof_dtype * numel;
1029 1030
      paddle::memory::Copy(
          place, py_arr.mutable_data(), place, tensor_buf_ptr, copy_bytes);
1031 1032
      return py_arr;
    }
1033 1034 1035
  } else if (is_xpu_tensor) {
#ifdef PADDLE_WITH_XPU
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1036 1037
    PADDLE_ENFORCE_EQ(py_arr.writeable(),
                      true,
1038 1039 1040 1041
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
1042 1043
        py_arr.owndata(),
        true,
1044 1045 1046 1047 1048
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1049
    auto p = tensor.place();
1050 1051 1052 1053 1054
    paddle::memory::Copy(platform::CPUPlace(),
                         py_arr.mutable_data(),
                         p,
                         tensor_buf_ptr,
                         copy_bytes);
1055 1056 1057 1058 1059 1060 1061
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
#endif
  } else if (is_gpu_tensor) {
1062
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1063
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1064 1065
    PADDLE_ENFORCE_EQ(py_arr.writeable(),
                      true,
1066 1067 1068 1069
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
1070 1071
        py_arr.owndata(),
        true,
1072 1073 1074 1075 1076
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1077
    auto p = tensor.place();
1078 1079 1080 1081 1082 1083
    paddle::memory::Copy(platform::CPUPlace(),
                         py_arr.mutable_data(),
                         p,
                         tensor_buf_ptr,
                         copy_bytes,
                         nullptr);
1084
    return py_arr;
1085
#else
1086 1087 1088
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CUDAPlace in CPU only version, "
        "Please recompile or reinstall Paddle with CUDA support."));
1089 1090 1091 1092
#endif
  } else if (is_npu_tensor) {
#ifdef PADDLE_WITH_ASCEND_CL
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1093 1094
    PADDLE_ENFORCE_EQ(py_arr.writeable(),
                      true,
1095 1096 1097 1098
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
1099 1100
        py_arr.owndata(),
        true,
1101 1102 1103 1104 1105
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1106
    auto p = tensor.place();
1107 1108 1109
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
1110 1111 1112 1113
        platform::CPUPlace(),
        py_arr.mutable_data(),
        p,
        tensor_buf_ptr,
1114 1115 1116 1117 1118 1119 1120 1121
        copy_bytes,
        reinterpret_cast<const platform::NPUDeviceContext &>(ctx).stream());
    ctx.Wait();
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use NPUPlace in CPU/GPU/XPU version, "
        "Please recompile or reinstall Paddle with NPU support."));
1122 1123 1124 1125
#endif
  } else if (is_mlu_tensor) {
#ifdef PADDLE_WITH_MLU
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1126 1127
    PADDLE_ENFORCE_EQ(py_arr.writeable(),
                      true,
1128 1129 1130 1131
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
1132 1133
        py_arr.owndata(),
        true,
1134 1135 1136 1137 1138
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1139
    auto p = tensor.place();
1140 1141 1142
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
1143 1144 1145 1146
        platform::CPUPlace(),
        py_arr.mutable_data(),
        p,
        tensor_buf_ptr,
1147 1148 1149
        copy_bytes,
        reinterpret_cast<const platform::MLUDeviceContext &>(ctx).stream());
    ctx.Wait();
1150 1151 1152 1153 1154
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use MLUPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with MLU support."));
1155 1156 1157 1158
#endif
  } else if (is_custom_device_tensor) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1159 1160
    PADDLE_ENFORCE_EQ(py_arr.writeable(),
                      true,
1161 1162 1163 1164
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
1165 1166
        py_arr.owndata(),
        true,
1167 1168 1169 1170 1171 1172 1173 1174
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
1175 1176 1177 1178 1179
        platform::CPUPlace(),
        py_arr.mutable_data(),
        tensor.place(),
        tensor_buf_ptr,
        copy_bytes,
1180 1181 1182 1183 1184 1185 1186 1187
        reinterpret_cast<const platform::CustomDeviceContext &>(ctx).stream());
    ctx.Wait();
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CustomPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with CustomPlace "
        "support."));
1188
#endif
1189 1190 1191
  }
  PADDLE_THROW(platform::errors::Unimplemented("Place is not supported"));
  return py::array();
1192 1193
}

1194 1195
}  // namespace pybind
}  // namespace paddle