activation_op.cc 42.2 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
T
tink2123 已提交
16
#include <memory>
D
dzhwinter 已提交
17
#include <string>
18
#include <type_traits>
T
tink2123 已提交
19
#include <unordered_map>
20
#include <vector>
21
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
22
#include "paddle/fluid/platform/port.h"
23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
Q
qijun 已提交
26

A
Adam 已提交
27 28
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
29 30 31
namespace paddle {
namespace operators {

32 33
using paddle::framework::Tensor;

34 35 36 37 38
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

39 40 41 42 43
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
44 45 46 47 48
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
49 50 51 52 53 54 55 56 57
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
          .SetDefault(false);                                                \
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
          .SetDefault(false);                                                \
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
58
  }
D
dzhwinter 已提交
59

H
hong 已提交
60 61
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
62
 public:
H
hong 已提交
63
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
64 65

 protected:
66
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
67 68 69 70
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
71

A
Adam 已提交
72 73 74 75
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
        FLAGS_use_mkldnn || (op->HasAttr("use_mkldnn") &&
                             boost::get<bool>(op->GetAttr("use_mkldnn")))) {
H
hong 已提交
76
      op->SetInput("X", this->Input("X"));
77 78 79 80
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
H
hong 已提交
81
      op->SetInput("Out", this->Output("Out"));
82
    }
D
dzhwinter 已提交
83
  }
84
};
D
dzhwinter 已提交
85

86 87 88 89
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
90
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
91 92 93 94 95 96 97 98 99 100
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
101 102 103 104 105
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
106
    layout = framework::DataLayout::kMKLDNN;
107 108
  }
#endif
109 110
  return framework::OpKernelType(oper.IndicateVarDataType(ctx, name),
                                 ctx.GetPlace(), layout, library);
111 112
}

Q
qijun 已提交
113 114 115 116
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

117
  void InferShape(framework::InferShapeContext* ctx) const override {
118
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
119
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
120
  }
121

122
 protected:
123 124 125 126
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
127 128
};

C
chengduo 已提交
129 130 131 132 133 134
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
135 136 137
  }
};

Q
qijun 已提交
138 139 140 141
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

142
  void InferShape(framework::InferShapeContext* ctx) const override {
143 144 145
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
146
  }
147

148
 protected:
149 150
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
151
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
152
  }
Q
qijun 已提交
153 154
};

D
dzhwinter 已提交
155
UNUSED constexpr char SigmoidDoc[] = R"DOC(
156
Sigmoid Activation Operator
K
Kexin Zhao 已提交
157

158
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
159

D
dzhwinter 已提交
160
)DOC";
Q
qijun 已提交
161

D
dzhwinter 已提交
162
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
163
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
164

165
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
166

D
dzhwinter 已提交
167
)DOC";
168

D
dzhwinter 已提交
169
UNUSED constexpr char ExpDoc[] = R"DOC(
170
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
171

172
$$out = e^x$$
K
Kexin Zhao 已提交
173

D
dzhwinter 已提交
174
)DOC";
Q
qijun 已提交
175

D
dzhwinter 已提交
176
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
177
Relu Activation Operator.
K
Kexin Zhao 已提交
178

179
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
180

D
dzhwinter 已提交
181
)DOC";
K
Kexin Zhao 已提交
182

D
dzhwinter 已提交
183
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
184
Tanh Activation Operator.
K
Kexin Zhao 已提交
185

Q
update  
qiaolongfei 已提交
186
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
187

D
dzhwinter 已提交
188
)DOC";
189

D
dzhwinter 已提交
190
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
191
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
192

Y
Yan Chunwei 已提交
193
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
194

D
dzhwinter 已提交
195
)DOC";
K
Kexin Zhao 已提交
196

D
dzhwinter 已提交
197
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
198
Sqrt Activation Operator.
K
Kexin Zhao 已提交
199

200
.. math:: out=\sqrt x=x^{1/2}
201

202 203
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
204

D
dzhwinter 已提交
205
)DOC";
206

Z
zhoukunsheng 已提交
207 208 209 210 211
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

212
$$out = \frac{1}{\sqrt{x}}$$
Z
zhoukunsheng 已提交
213 214 215

)DOC";

D
dzhwinter 已提交
216
UNUSED constexpr char AbsDoc[] = R"DOC(
K
kexinzhao 已提交
217
Abs Activation Operator.
K
Kexin Zhao 已提交
218

219
$$out = |x|$$
K
Kexin Zhao 已提交
220

D
dzhwinter 已提交
221
)DOC";
222

D
dzhwinter 已提交
223
UNUSED constexpr char CeilDoc[] = R"DOC(
224
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
225

226
$$out = \left \lceil x \right \rceil$$
D
dzhwinter 已提交
227

D
dzhwinter 已提交
228
)DOC";
D
dzhwinter 已提交
229

D
dzhwinter 已提交
230
UNUSED constexpr char FloorDoc[] = R"DOC(
D
dzhwinter 已提交
231 232
Floor Activation Operator.

233
$$out = \left \lfloor x \right \rfloor$$
D
dzhwinter 已提交
234

D
dzhwinter 已提交
235
)DOC";
D
dzhwinter 已提交
236

D
dzhwinter 已提交
237
UNUSED constexpr char CosDoc[] = R"DOC(
238
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
239

240
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
241

D
dzhwinter 已提交
242
)DOC";
C
add cos  
chengduoZH 已提交
243

D
dzhwinter 已提交
244
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
245 246
Sine Activation Operator.

247
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
248

D
dzhwinter 已提交
249
)DOC";
C
add sin  
chengduoZH 已提交
250

D
dzhwinter 已提交
251
UNUSED constexpr char RoundDoc[] = R"DOC(
252
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
253

254 255 256 257 258 259 260 261 262
.. code-block:: python

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
263

D
dzhwinter 已提交
264
)DOC";
D
dzhwinter 已提交
265

D
dzhwinter 已提交
266
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
267
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
268

269
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
270

D
dzhwinter 已提交
271
)DOC";
272

D
dzhwinter 已提交
273
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
274
Log Activation Operator.
K
Kexin Zhao 已提交
275

276
$$out = \ln(x)$$
K
Kexin Zhao 已提交
277 278 279

Natural logarithm of x.

D
dzhwinter 已提交
280 281
)DOC";

282 283 284 285 286 287 288 289 290
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
291
UNUSED constexpr char SquareDoc[] = R"DOC(
292
The OP square each elements of the inputs.
D
dzhwinter 已提交
293

294
$$out = x^2$$
295

D
dzhwinter 已提交
296 297
)DOC";

D
dzhwinter 已提交
298
UNUSED constexpr char SoftplusDoc[] = R"DOC(
D
dzhwinter 已提交
299 300
Softplus Activation Operator.

301
$$out = \ln(1 + e^{x})$$
D
dzhwinter 已提交
302 303 304

)DOC";

D
dzhwinter 已提交
305
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
306 307
Softsign Activation Operator.

308
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
309 310 311

)DOC";

T
tink2123 已提交
312 313 314 315 316 317
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
318 319
Arccosine Activation Operator.

T
tink2123 已提交
320
$$out = \cos^{-1}(x)$$
321

T
tink2123 已提交
322 323 324
)DOC");
  }
};
325

T
tink2123 已提交
326 327 328 329 330 331
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of asin operator");
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
332 333
Arcsine Activation Operator.

T
tink2123 已提交
334
$$out = \sin^{-1}(x)$$
335

T
tink2123 已提交
336 337 338
)DOC");
  }
};
339

T
tink2123 已提交
340 341 342 343 344 345
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of atan operator");
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
346 347
Arctanh Activation Operator.

T
tink2123 已提交
348
$$out = \tanh^{-1}(x)$$
349

T
tink2123 已提交
350 351 352
)DOC");
  }
};
353

D
dzhwinter 已提交
354
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
355
 public:
Y
Yu Yang 已提交
356
  void Make() override {
W
Wilber 已提交
357 358 359 360 361 362 363 364
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
365 366 367
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
368
    AddComment(R"DOC(
D
dzhwinter 已提交
369
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
370

W
Wilber 已提交
371
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
372 373

)DOC");
374 375 376
  }
};

D
dzhwinter 已提交
377
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
378
 public:
Y
Yu Yang 已提交
379
  void Make() override {
D
dzhwinter 已提交
380 381 382
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
383
    AddComment(R"DOC(
384 385 386
:strong:`Softshrink Activation Operator`

..  math::
387
    out = \begin{cases}
388 389 390 391
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
392 393

)DOC");
K
kexinzhao 已提交
394 395 396
  }
};

D
dzhwinter 已提交
397
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
398
 public:
Y
Yu Yang 已提交
399
  void Make() override {
D
dzhwinter 已提交
400 401
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
402 403
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
404
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
405
    AddComment(R"DOC(
Y
yuyang18 已提交
406
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
407

Y
yuyang18 已提交
408 409 410 411 412 413
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
414 415

)DOC");
416 417 418
  }
};

419 420
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
421
  void Make() override {
422 423 424 425 426 427
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
428 429 430 431
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
432
    AddComment(R"DOC(
K
kexinzhao 已提交
433
BRelu Activation Operator.
K
Kexin Zhao 已提交
434

435
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
436 437

)DOC");
438 439 440 441 442
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
443
  void Make() override {
444
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
445
    AddOutput("Out", "Output of SoftRelu operator");
446 447
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
448
    AddComment(R"DOC(
K
kexinzhao 已提交
449
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
450

451
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
452 453

)DOC");
454 455 456
  }
};

457 458
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
459
  void Make() override {
460 461 462 463 464 465
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
466
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
467
    AddComment(R"DOC(
K
kexinzhao 已提交
468
ELU Activation Operator.
K
Kexin Zhao 已提交
469 470 471 472

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

473
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
474 475

)DOC");
476 477 478
  }
};

479 480
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
481
  void Make() override {
Z
zhupengyang 已提交
482 483 484 485 486 487 488 489
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
490
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
491
    AddComment(R"DOC(
K
kexinzhao 已提交
492
Relu6 Activation Operator.
K
Kexin Zhao 已提交
493

494
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
495 496

)DOC");
497 498 499
  }
};

500 501
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
502
  void Make() override {
503
    AddInput("X", "Input of Pow operator");
504 505 506 507 508
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
509
    AddOutput("Out", "Output of Pow operator");
510
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
511
    AddComment(R"DOC(
K
kexinzhao 已提交
512
Pow Activation Operator.
K
Kexin Zhao 已提交
513

514
$$out = x^{factor}$$
K
Kexin Zhao 已提交
515 516

)DOC");
517 518 519 520 521
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
522
  void Make() override {
523 524 525 526 527 528
    AddInput("X",
             "Input of STanh operator."
             " A LoDTensor or Tensor with type float32, float64.");
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
529 530
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
531
    AddComment(R"DOC(
K
kexinzhao 已提交
532
STanh Activation Operator.
K
Kexin Zhao 已提交
533

Y
Yan Chunwei 已提交
534
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
535 536

)DOC");
Q
qijun 已提交
537 538 539
  }
};

540 541
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
542
  void Make() override {
543
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
544
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
545 546
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
547
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
548
    AddComment(R"DOC(
Y
yuyang18 已提交
549
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
550

Y
yuyang18 已提交
551
..  math::
K
Kexin Zhao 已提交
552

Y
yuyang18 已提交
553
    out = \begin{cases}
Y
yuyang18 已提交
554
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
555 556
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
557
)DOC");
558 559 560
  }
};

561 562
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
563
  void Make() override {
564 565 566 567 568
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
569
        .SetDefault(0.2f);
570 571 572
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
573
        .SetDefault(0.5f);
574
    AddComment(R"DOC(
K
kexinzhao 已提交
575
HardSigmoid Activation Operator.
576

577
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
578
which is much faster than sigmoid.
579

580
$$out = \max(0, \min(1, slope * x + offset))$$
581

K
Kexin Zhao 已提交
582
)DOC");
583 584 585
  }
};

A
Abhinav Arora 已提交
586 587
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
588
  void Make() override {
A
Abhinav Arora 已提交
589
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
590
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
591
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
592 593 594
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
A
Abhinav Arora 已提交
595 596 597
    AddComment(R"DOC(
Swish Activation Operator.

598
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
599 600 601 602 603

)DOC");
  }
};

H
huangjun12 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

620
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
621 622 623 624 625 626 627 628 629

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
630 631 632 633 634 635 636
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
637
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
638 639 640 641 642 643 644 645
REGISTER_ACTIVATION_OP_MAKER(Abs, AbsDoc);
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
646
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
647 648 649 650
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softplus, SoftplusDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

651
template <ActBwdOpFwdDeps kDepValue>
652 653 654 655 656
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
657
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
658
      if (ctx->HasOutput("DX")) {
659 660 661
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
662
      if (ctx->HasOutput("DDOut")) {
663 664 665
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
666
    }
667
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
668
      if (ctx->HasOutput("DOut")) {
669 670 671
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
700 701 702
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
703 704 705 706 707 708 709 710 711 712
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

713 714 715 716
//
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
//
H
hong 已提交
717 718
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
719
 public:
H
hong 已提交
720
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
721 722

 protected:
723
  void Apply(GradOpPtr<T> op) const override {
724 725
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
726
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
727
    // input2: ddx
H
hong 已提交
728 729
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
730
    // output: ddy
H
hong 已提交
731
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
732 733 734
  }
};

735 736
// leaky_relu Grad: dx=dy if y>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if y>=0 else alpha * ddx
H
hong 已提交
737
template <typename T>
738
class LeakyReluDoubleGradMaker
H
hong 已提交
739
    : public ::paddle::framework::SingleGradOpMaker<T> {
740
 public:
H
hong 已提交
741
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
742 743

 protected:
744
  void Apply(GradOpPtr<T> op) const override {
745
    op->SetType("leaky_relu_grad_grad");
Z
Zeng Jinle 已提交
746
    // input1: Out
H
hong 已提交
747
    op->SetInput("Out", this->Input("Out"));
748
    // X@GRAD@GRAD: ddx
H
hong 已提交
749 750
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
751
    // Out@GRAD@GRAD: ddy
H
hong 已提交
752
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
753 754 755
  }
};

D
Double_V 已提交
756 757 758 759 760 761 762 763
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
764
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
779 780
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
781 782
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
783
 public:
H
hong 已提交
784
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
785 786

 protected:
787
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
788
    op->SetType("sqrt_grad_grad");
H
hong 已提交
789 790 791 792 793 794
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
795 796 797
  }
};

798 799
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
800 801
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
802
 public:
H
hong 已提交
803
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
804 805

 protected:
806
  void Apply(GradOpPtr<T> op) const override {
807
    op->SetType("square_grad_grad");
H
hong 已提交
808
    op->SetInput("X", this->Input("X"));
809
    // Out@GRAD: dy
H
hong 已提交
810
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
811
    // X@GRAD@GRAD: ddx
H
hong 已提交
812
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
813

H
hong 已提交
814
    op->SetAttrMap(this->Attrs());
815 816

    // X@GRAD: dx
H
hong 已提交
817
    op->SetOutput("DX", this->InputGrad("X"));
818
    // Out@GRAD@GRAD: ddy
H
hong 已提交
819
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
820 821 822
  }
};

823 824 825
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInference,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
826 827
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInference,
                           {"DDX", "DDOut"});
828

H
hong 已提交
829 830
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
831
 public:
H
hong 已提交
832
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
833 834

 protected:
835
  void Apply(GradOpPtr<T> op) const override {
836
    op->SetType("pow_grad");
H
hong 已提交
837 838 839 840 841
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
896
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
897 898 899 900
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
901
namespace plat = paddle::platform;
902

903 904 905 906
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
907 908 909 910
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
911
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
912
                       ops::ActFwdInplaceInferer, void>::type);             \
913 914
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
                    ops::ActivationGradOpInplaceInference);
915 916 917

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
918 919 920 921 922 923 924 925 926 927
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
928
                                ops::grad_functor<double>>);
929

930 931
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
932

933
/* ==========================    relu register  ============================= */
934 935
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
936 937 938 939
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
940
    ops::ActFwdInplaceInferer);
941
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
942
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
943 944
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
945 946
REGISTER_OPERATOR(
    relu_grad_grad,
947 948
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
949 950 951 952 953 954 955 956 957 958 959

REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluFunctor, ReluGradFunctor);

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
960
/* ========================================================================== */
961

962
/* ======================== leaky relu register  ============================ */
963 964 965
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
966 967 968 969
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
970
    ops::ActFwdInplaceInferer);
971
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
972
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
973 974
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
975 976
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
977 978
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
979

980 981 982 983 984 985 986 987 988 989
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
990 991
/* ========================================================================== */

D
Double_V 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/* ========================    elu  register     ============================ */
REGISTER_OPERATOR(
    elu, ops::ActivationOp, ops::ELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInference,
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);

REGISTER_ACTIVATION_CPU_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1020 1021 1022
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1023 1024 1025 1026
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1027
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1028
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1029
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
1030 1031
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1032 1033
REGISTER_OPERATOR(
    sqrt_grad_grad,
1034 1035 1036
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);

L
lvmengsi 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1047 1048 1049 1050
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1051 1052 1053 1054
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1055
    ops::ActFwdInplaceInferer);
1056
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1057
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
1058 1059
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1060 1061
REGISTER_OPERATOR(
    square_grad_grad,
1062 1063
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1083 1084 1085 1086 1087 1088 1089 1090

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1091 1092 1093 1094 1095
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1096
/* ========================================================================== */
1097 1098 1099 1100 1101

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1102 1103
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1104
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1105
                     ops::ActFwdInplaceInferer, void>::type);
1106 1107 1108 1109 1110
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
                  ops::ActivationGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1111 1112 1113
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1114 1115 1116
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   abs register  ============================ */
REGISTER_OPERATOR(
    abs, ops::ActivationOp, ops::AbsOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::AbsGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(abs_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(abs,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    abs_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::AbsGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int64_t>>);
1184
/* ========================================================================== */