brpc_utils_test.cc 5.1 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <unistd.h>
#include <string>
#include <thread>  // NOLINT

#include "google/protobuf/text_format.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/variable.h"

#include "paddle/fluid/distributed/service/brpc_utils.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/printf.h"

namespace framework = paddle::framework;
namespace platform = paddle::platform;
namespace operators = paddle::operators;
namespace math = paddle::operators::math;
namespace memory = paddle::memory;
namespace distributed = paddle::distributed;

void CreateVarsOnScope(framework::Scope* scope, platform::Place* place,
                       const platform::DeviceContext& ctx) {
  // var 1
  framework::Variable* var1 = scope->Var("x1");
  auto* tensor1 = var1->GetMutable<framework::LoDTensor>();
  tensor1->Resize(framework::make_ddim({512, 8, 4, 2}));
  framework::LoD lod1;
  lod1.push_back(framework::Vector<size_t>({1, 3, 8}));
  tensor1->set_lod(lod1);
  tensor1->mutable_data<float>(*place);
  math::set_constant(ctx, tensor1, 31.9);

  // var 2
  framework::Variable* var2 = scope->Var("x2");
  auto* tensor2 = var2->GetMutable<framework::LoDTensor>();
  tensor2->Resize(framework::make_ddim({1000, 64}));
  framework::LoD lod2;
  lod2.push_back(framework::Vector<size_t>({1, 1}));
  tensor2->set_lod(lod2);
  tensor2->mutable_data<int>(*place);
  math::set_constant(ctx, tensor2, 100);

  // var 3
  framework::Variable* var3 = scope->Var("x3");
  auto* slr = var3->GetMutable<framework::SelectedRows>();
  slr->set_height(564);
  auto* tensor3 = slr->mutable_value();
  auto* rows = slr->mutable_rows();
  tensor3->Resize(framework::make_ddim({564, 128}));
  tensor3->mutable_data<float>(*place);
  math::set_constant(ctx, tensor3, 32.7);
  for (int i = 0; i < 564; ++i) rows->push_back(i);
}

void RunMultiVarMsg(platform::Place place) {
  framework::Scope scope;
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& ctx = *pool.Get(place);
  CreateVarsOnScope(&scope, &place, ctx);

  ::paddle::MultiVariableMessage multi_msg;
  std::string message_name("se_de_test");
  std::vector<std::string> send_var_name = {"x1", "x2", "x3"};
  std::vector<std::string> recv_var_name = {};
  LOG(INFO) << "begin SerializeToMultiVarMsg";

  butil::IOBuf io_buf;
  distributed::SerializeToMultiVarMsgAndIOBuf(message_name, send_var_name,
                                              recv_var_name, ctx, &scope,
                                              &multi_msg, &io_buf);
  EXPECT_GT(multi_msg.ByteSizeLong(), static_cast<size_t>(0));

  // deserialize
  framework::Scope scope_recv;
  LOG(INFO) << "begin DeserializeFromMultiVarMsg";
  distributed::DeserializeFromMultiVarMsgAndIOBuf(multi_msg, &io_buf, ctx,
                                                  &scope_recv);

  // check var1
  framework::Variable* var1 = scope_recv.FindVar("x1");
  auto* tensor1 = var1->GetMutable<framework::LoDTensor>();
  EXPECT_EQ(tensor1->dims(), framework::make_ddim({512, 8, 4, 2}));
  // EXPECT_EQ(tensor1->lod(), framework::Vector<size_t>({1, 3, 8}));
  auto* tensor_data1 = const_cast<float*>(tensor1->data<float>());
  int tensor_numel1 = 512 * 8 * 4 * 2;
  for (int i = 0; i < tensor_numel1; ++i)
    EXPECT_FLOAT_EQ(tensor_data1[i], 31.9);

  // check var2
  framework::Variable* var2 = scope_recv.FindVar("x2");
  auto* tensor2 = var2->GetMutable<framework::LoDTensor>();
  EXPECT_EQ(tensor2->dims(), framework::make_ddim({1000, 64}));
  // EXPECT_EQ(tensor2->lod(), framework::Vector<size_t>({1, 1}));
  auto* tensor_data2 = const_cast<int*>(tensor2->data<int>());
  int tensor_numel2 = 1000 * 64;
  for (int i = 0; i < tensor_numel2; ++i) EXPECT_EQ(tensor_data2[i], 100);

  // check var3
  framework::Variable* var3 = scope_recv.FindVar("x3");
  auto* slr = var3->GetMutable<framework::SelectedRows>();
  EXPECT_EQ(slr->rows().size(), 564);
  for (int i = 0; i < 564; ++i) {
    EXPECT_EQ(slr->rows()[i], i);
  }

  auto* tensor3 = slr->mutable_value();
  EXPECT_EQ(tensor3->dims(), framework::make_ddim({564, 128}));
  auto* tensor_data3 = const_cast<float*>(tensor3->data<float>());
  int tensor_numel3 = 564 * 128;
  for (int i = 0; i < tensor_numel3; ++i)
    EXPECT_FLOAT_EQ(tensor_data3[i], 32.7);
}

TEST(MultiVarMsgCPU, Run) {
  platform::CPUPlace place;
  RunMultiVarMsg(place);
}

// #ifdef PADDLE_WITH_CUDA
// TEST(MultiVarMsgGPU, Run) {
//   platform::CUDAPlace place;
//   RunMultiVarMsg(place);
// }
// #endif