activation_op.h 18.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
12 13

#pragma once
D
dzhwinter 已提交
14
#include <glog/logging.h>
15

Y
Yihua Xu 已提交
16
#include <algorithm>
17
#include <cmath>
18
#include <memory>
D
dzhwinter 已提交
19 20
#include <string>
#include <unordered_set>
21 22
#include <utility>
#include <vector>
C
Clementine 已提交
23 24 25 26
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

27
#include <type_traits>
28

Y
Yi Wang 已提交
29 30
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
31
#include "paddle/fluid/framework/tensor_util.h"
32
#include "paddle/fluid/platform/enforce.h"
33
#include "paddle/fluid/platform/float16.h"
34
#include "paddle/phi/kernels/funcs/blas/blas.h"
35 36 37 38
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

39 40
#include "paddle/phi/kernels/funcs/activation_functor.h"

Q
qijun 已提交
41 42 43
namespace paddle {
namespace operators {

44 45
using framework::To32BitIndex;

46
using ActBwdOpFwdDeps = phi::funcs::ActBwdOpFwdDeps;
47

C
chengduo 已提交
48 49 50 51 52 53
/* The following operator can be used to process SelectedRows, because the
 * output of those operator for zero is zero too.
 */
static std::unordered_set<std::string> CanBeUsedBySelectedRows = {
    "abs", "abs_grad", "square", "square_grad", "sqrt", "sqrt_grad"};

54 55 56 57 58
inline void ExtractActivationTensor(const framework::ExecutionContext& context,
                                    const framework::Tensor** X,
                                    framework::Tensor** Out) {
  auto x_var = context.InputVar("X");
  auto out_var = context.OutputVar("Out");
59 60 61 62 63
  PADDLE_ENFORCE_NOT_NULL(x_var,
                          platform::errors::NotFound(
                              "Cannot get input Variable X, variable name = %s",
                              context.InputName("X")));
  PADDLE_ENFORCE_NOT_NULL(
64 65 66 67
      out_var,
      platform::errors::NotFound(
          "Cannot get output Variable Out, variable name = %s",
          context.OutputName("Out")));
H
hong 已提交
68
  if (CanBeUsedBySelectedRows.count(context.Type())) {
69 70 71 72 73 74 75 76
    *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
    *Out = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        out_var);
  } else {
    *X = context.Input<framework::Tensor>("X");
    *Out = context.Output<framework::Tensor>("Out");
  }

77 78 79 80 81
  PADDLE_ENFORCE_NOT_NULL(
      *Out,
      platform::errors::NotFound("Cannot get the tensor from the Variable "
                                 "Output(Out), variable name = %s",
                                 context.OutputName("Out")));
82 83
}

84
template <ActBwdOpFwdDeps kDepValue>
85
inline void ExtractActivationGradTensor(
86 87 88 89
    const framework::ExecutionContext& context,
    const framework::Tensor** X,
    const framework::Tensor** Out,
    const framework::Tensor** dOut,
90 91 92
    framework::Tensor** dX) {
  auto out_grad_var = context.InputVar(framework::GradVarName("Out"));
  auto x_grad_var = context.OutputVar(framework::GradVarName("X"));
93 94
  const framework::Variable* out_var = nullptr;

95 96
  if (static_cast<int>(kDepValue) &
      static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
97
    out_var = context.InputVar("Out");
98
    PADDLE_ENFORCE_NOT_NULL(
99 100 101 102
        out_var,
        platform::errors::NotFound(
            "Cannot get input Variable Out, variable name = %s",
            context.InputName("Out")));
103 104 105
  }

  PADDLE_ENFORCE_NOT_NULL(
106 107 108 109 110
      out_grad_var,
      platform::errors::NotFound(
          "Cannot get input Variable %s, variable name = %s",
          framework::GradVarName("Out"),
          context.InputName(framework::GradVarName("Out"))));
111
  PADDLE_ENFORCE_NOT_NULL(
112 113 114 115 116
      x_grad_var,
      platform::errors::NotFound(
          "Cannot get output Variable %s, variable name = %s",
          framework::GradVarName("X"),
          context.OutputName(framework::GradVarName("X"))));
117

H
hong 已提交
118
  if (CanBeUsedBySelectedRows.count(context.Type())) {
119 120 121 122
    *dOut = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(
        *out_grad_var);
    *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        x_grad_var);
123 124 125 126 127 128 129 130

    if (out_var) {
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
    } else {
      *Out = *dOut;  // fake out
    }

131 132 133 134
  } else {
    *Out = context.Input<framework::Tensor>("Out");
    *dOut = context.Input<framework::Tensor>(framework::GradVarName("Out"));
    *dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
135 136 137 138 139 140

    if (out_var) {
      *Out = &(out_var->Get<framework::LoDTensor>());
    } else {
      *Out = *dOut;  // fake out
    }
141
  }
142

143 144 145 146 147
  PADDLE_ENFORCE_NOT_NULL(*dX,
                          platform::errors::NotFound(
                              "Cannot get the tensor from the Variable "
                              "Output(Out), variable name = %s",
                              context.OutputName(framework::GradVarName("X"))));
148

149
  if (static_cast<int>(kDepValue) & static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
C
chengduo 已提交
150
    auto x_var = context.InputVar("X");
151 152 153 154 155
    PADDLE_ENFORCE_NOT_NULL(
        x_var,
        platform::errors::NotFound("Cannot get the tensor from the "
                                   "Variable Input(X), variable name = %s",
                                   context.InputName("X")));
H
hong 已提交
156
    if (CanBeUsedBySelectedRows.count(context.Type())) {
157
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
C
chengduo 已提交
158
    } else {
159
      *X = context.Input<framework::Tensor>("X");
C
chengduo 已提交
160
    }
161
  } else {
H
hong 已提交
162
    VLOG(10) << " Inplace activation of Op : " << context.Type();
163 164 165
    *X = *dX;
  }
}
C
chengduo 已提交
166

167 168 169 170 171
template <typename DeviceContext, typename Functor>
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
C
chengduo 已提交
172

173 174 175 176
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
C
chengduo 已提交
177
    Out->mutable_data<T>(context.GetPlace());
178

179 180 181 182
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "Activation"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "Activation"));
Q
QI JUN 已提交
183 184
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
185
    Functor functor;
186 187 188 189 190

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
191 192 193 194 195 196 197 198
    // use 32bit index to speed up computation
    bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
    bool is_gpu_place = platform::is_gpu_place(context.GetPlace());
    if (use_32bit_index && is_gpu_place) {
      functor(*place, To32BitIndex(x), To32BitIndex(out));
    } else {
      functor(*place, x, out);
    }
Q
qijun 已提交
199 200 201
  }
};

Q
QI JUN 已提交
202
template <typename DeviceContext, typename Functor>
203 204
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
205
 public:
206
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
207
  void Compute(const framework::ExecutionContext& context) const override {
208 209 210
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
211 212
    ExtractActivationGradTensor<Functor::FwdDeps()>(
        context, &X, &Out, &dOut, &dX);
Q
qijun 已提交
213
    dX->mutable_data<T>(context.GetPlace());
214 215 216 217 218 219 220 221
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "Out@GRAD", "ActivationGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "ActivationGrad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Input", "X@GRAD", "ActivationGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "ActivationGrad"));
Q
QI JUN 已提交
222 223
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
224
    Functor functor;
225 226 227 228
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
229 230 231 232
    // use 32bit index to speed up computation
    bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
    bool is_gpu_place = platform::is_gpu_place(context.GetPlace());
    if (use_32bit_index && is_gpu_place) {
233 234 235 236
      functor(*place,
              To32BitIndex(x),
              To32BitIndex(out),
              To32BitIndex(dout),
237 238 239 240
              To32BitIndex(dx));
    } else {
      functor(*place, x, out, dout, dx);
    }
Q
qijun 已提交
241 242 243
  }
};

244 245 246 247 248 249 250 251 252
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
};

253 254 255 256 257 258
#define USE_PHI_FUNCTOR(name)                         \
  template <typename T>                               \
  using name##Functor = phi::funcs::name##Functor<T>; \
  template <typename T>                               \
  using name##GradFunctor = phi::funcs::name##GradFunctor<T>;

259 260 261 262 263 264 265 266
#define USE_PHI_DOUBLE_GRAD_FUNCTOR(name) \
  template <typename T>                   \
  using name##GradGradFunctor = phi::funcs::name##GradGradFunctor<T>;

#define USE_PHI_TRIPLE_GRAD_FUNCTOR(name) \
  template <typename T>                   \
  using name##TripleGradFunctor = phi::funcs::name##TripleGradFunctor<T>;

267 268 269 270 271 272 273 274 275 276 277
USE_PHI_FUNCTOR(Cos)
USE_PHI_FUNCTOR(Tan)
USE_PHI_FUNCTOR(Acos)
USE_PHI_FUNCTOR(Sin)
USE_PHI_FUNCTOR(Asin)
USE_PHI_FUNCTOR(Atan)
USE_PHI_FUNCTOR(Sinh)
USE_PHI_FUNCTOR(Cosh)
USE_PHI_FUNCTOR(Asinh)
USE_PHI_FUNCTOR(Acosh)
USE_PHI_FUNCTOR(Atanh)
278
USE_PHI_FUNCTOR(Tanh)
279
USE_PHI_FUNCTOR(Exp)
280 281 282 283 284 285
USE_PHI_DOUBLE_GRAD_FUNCTOR(Tanh)
USE_PHI_TRIPLE_GRAD_FUNCTOR(Tanh)
USE_PHI_FUNCTOR(BRelu)
USE_PHI_FUNCTOR(ThresholdedRelu)
USE_PHI_FUNCTOR(LeakyRelu)
USE_PHI_DOUBLE_GRAD_FUNCTOR(LeakyRelu)
Y
YuanRisheng 已提交
286 287 288 289 290 291
USE_PHI_FUNCTOR(HardShrink)
USE_PHI_FUNCTOR(SoftShrink)
USE_PHI_FUNCTOR(TanhShrink)
USE_PHI_FUNCTOR(Silu)
USE_PHI_FUNCTOR(ELU)
USE_PHI_DOUBLE_GRAD_FUNCTOR(ELU)
Y
YuanRisheng 已提交
292 293 294 295 296
USE_PHI_FUNCTOR(Sigmoid)
USE_PHI_DOUBLE_GRAD_FUNCTOR(Sigmoid)
USE_PHI_TRIPLE_GRAD_FUNCTOR(Sigmoid)
USE_PHI_FUNCTOR(LogSigmoid)
USE_PHI_FUNCTOR(HardSigmoid)
297 298 299 300 301
USE_PHI_FUNCTOR(Log)
USE_PHI_DOUBLE_GRAD_FUNCTOR(Log)
USE_PHI_FUNCTOR(Log2)
USE_PHI_FUNCTOR(Log10)
USE_PHI_FUNCTOR(Log1p)
Y
YuanRisheng 已提交
302 303 304
USE_PHI_FUNCTOR(Swish)
USE_PHI_FUNCTOR(HardSwish)
USE_PHI_FUNCTOR(Pow)
305 306 307 308 309 310
USE_PHI_FUNCTOR(Exp)
USE_PHI_FUNCTOR(Expm1)
USE_PHI_FUNCTOR(Mish)
USE_PHI_FUNCTOR(STanh)
USE_PHI_FUNCTOR(Reciprocal)
USE_PHI_FUNCTOR(Square)
Y
YuanRisheng 已提交
311
USE_PHI_DOUBLE_GRAD_FUNCTOR(Square)
312
USE_PHI_FUNCTOR(Sqrt)
Y
YuanRisheng 已提交
313
USE_PHI_DOUBLE_GRAD_FUNCTOR(Sqrt)
314
USE_PHI_FUNCTOR(Rsqrt)
Y
YuanRisheng 已提交
315
USE_PHI_DOUBLE_GRAD_FUNCTOR(Rsqrt)
316
USE_PHI_FUNCTOR(Softplus)
Y
YuanRisheng 已提交
317 318
USE_PHI_FUNCTOR(CELU)
USE_PHI_DOUBLE_GRAD_FUNCTOR(CELU)
Y
YuanRisheng 已提交
319 320 321

template <typename T>
using ELUGradNegativeAlphaFunctor = phi::funcs::ELUGradNegativeAlphaFunctor<T>;
322

Y
YuanRisheng 已提交
323 324 325 326 327 328 329 330 331 332 333 334
template <typename T>
using RoundFunctor = phi::funcs::RoundFunctor<T>;

template <typename T>
using FloorFunctor = phi::funcs::FloorFunctor<T>;

template <typename T>
using CeilFunctor = phi::funcs::CeilFunctor<T>;

template <typename T>
using ZeroGradFunctor = phi::funcs::ZeroGradFunctor<T>;

335
template <typename T>
336
using ELUGradNegativeAlphaFunctor = phi::funcs::ELUGradNegativeAlphaFunctor<T>;
R
ronnywang 已提交
337

Q
qijun 已提交
338
// relu(x) = max(x, 0)
339 340

template <typename T>
341 342 343
using ReluCPUFunctor = phi::funcs::ReluCPUFunctor<T>;
template <typename T>
using ReluGradFunctor = phi::funcs::ReluGradFunctor<T>;
Q
qijun 已提交
344

Q
qijun 已提交
345
template <typename T>
346
using ReluGradGradFunctor = phi::funcs::ReluGradGradFunctor<T>;
347

348 349
template <typename T>
using ReluCUDAFunctor = phi::funcs::ReluCUDAFunctor<T>;
Q
qijun 已提交
350

351 352 353 354 355 356 357 358 359
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
360 361 362
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
363
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
364 365 366 367 368 369 370 371 372
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
373 374 375 376
  template <typename Device,
            typename X,
            typename Out,
            typename dOut,
F
fengjiayi 已提交
377 378
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
379
    dx.device(d) =
380 381
        dout * ((out > static_cast<T>(0)) * (out < static_cast<T>(threshold)))
                   .template cast<T>();
382
  }
383

384 385 386
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
387 388
};

389 390 391 392 393 394
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
395

F
fengjiayi 已提交
396 397
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
398 399
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
400
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
401 402 403
  }
};

404 405 406 407 408 409
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
410 411 412 413
  template <typename Device,
            typename X,
            typename Out,
            typename dOut,
F
fengjiayi 已提交
414 415
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
416
    auto tmp = static_cast<T>(threshold);
Z
Zeng Jinle 已提交
417
    auto temp = ((out > -tmp) * (out < tmp)).template cast<T>();
F
fengjiayi 已提交
418
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
419
  }
420

421 422 423
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
424 425
};

Z
zhupengyang 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
template <typename DeviceContext, typename T>
class ELUGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Out = context.Input<framework::Tensor>("Out");
    auto* dOut =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    const float alpha = context.Attr<float>("alpha");
    dX->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "elu_grad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "elu_grad"));
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "dOut", "elu_grad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Output", "dX", "elu_grad"));
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();

    if (alpha > 0) {
      ELUGradFunctor<T> functor;
      functor.alpha = alpha;
      functor(*place, x, out, dout, dx);
    } else {
      ELUGradNegativeAlphaFunctor<T> functor;
      functor.alpha = alpha;
      functor(*place, x, out, dout, dx);
    }
  }
};

Z
Zhong Hui 已提交
461 462 463
template <typename T>
struct AbsGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
464 465 466 467 468 469
  void operator()(const Device& dev,
                  const framework::Tensor* X,
                  const framework::Tensor* Out,
                  const framework::Tensor* ddX,
                  framework::Tensor* ddOut,
                  framework::Tensor* dOut,
Z
Zhong Hui 已提交
470 471 472 473 474 475 476 477 478 479 480 481
                  framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "AbsGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "AbsGradGrad"));
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "AbsGradGrad"));
      ddout.device(*d) = ddx * x.sign();
    }
  }
482
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
483 484
};

485 486
// TODO(dengkaipeng): double gradient calculation for Square/Sqrt need
// DOut(dy) as input(not output), tensor extraction is different from
487
// others. Impliment extraction kernel separately here.
488
inline void ExtractDoubleGradTensorWithInputDOut(
489 490 491 492 493 494
    const framework::ExecutionContext& ctx,
    const framework::Tensor** X,
    const framework::Tensor** ddX,
    framework::Tensor** dX,
    const framework::Tensor** dOut,
    framework::Tensor** ddOut) {
495 496 497
  // extract ddX(output), ddOut(input)
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
498
  PADDLE_ENFORCE_NOT_NULL(
499 500 501 502
      ddx_var,
      platform::errors::NotFound(
          "Cannot get input Variable Out, variable name = %s",
          ctx.InputName("DDX")));
503 504 505 506
  *ddX = ctx.Input<framework::Tensor>("DDX");
  if (ddo_var) {
    *ddOut = ctx.Output<framework::Tensor>("DDOut");
  }
507 508 509 510 511
  PADDLE_ENFORCE_NOT_NULL(
      ddX,
      platform::errors::NotFound(
          "Cannot get the tensor from the Variable DDX, variable name = %s",
          ctx.OutputName("DDX")));
512 513 514

  // extract x(input), dx(output)
  auto x_var = ctx.InputVar("X");
515
  PADDLE_ENFORCE_NOT_NULL(
516 517 518 519
      x_var,
      platform::errors::NotFound(
          "Cannot get input Variable Out, variable name = %s",
          ctx.InputName("X")));
520 521 522 523 524 525 526 527 528 529 530 531 532
  auto dx_var = ctx.OutputVar("DX");
  *X = ctx.Input<framework::Tensor>("X");
  if (dx_var) {
    *dX = ctx.Output<framework::Tensor>("DX");
  }

  // extract dOut(input)
  auto dout_var = ctx.InputVar("DOut");
  if (dout_var) {
    *dOut = ctx.Input<framework::Tensor>("DOut");
  }
}

533 534 535 536 537 538 539 540 541 542 543 544 545
template <typename T>
struct SoftsignFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function

template <typename T>
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
546 547 548 549
  template <typename Device,
            typename X,
            typename Out,
            typename dOut,
550 551 552 553 554 555 556 557 558
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
};

Q
qijun 已提交
559 560
}  // namespace operators
}  // namespace paddle
561

562 563 564 565
#define FOR_EACH_ACTIVATION_OP(__macro)                               \
  __macro(soft_relu, SoftRelu, SoftReluFunctor, SoftReluGradFunctor); \
  __macro(softsign, Softsign, SoftsignFunctor, SoftsignGradFunctor);  \
  __macro(relu6, Relu6, Relu6Functor, Relu6GradFunctor);