batch_norm_op.cu 10.7 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/batch_norm_op.h"

#include <cfloat>
#include "paddle/operators/math/math_function.h"
#include "paddle/platform/cudnn_helper.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

void ExtractNCWHD(const framework::DDim &dims,
                  const TensorFormat &tensor_format, int *N, int *C, int *H,
                  int *W, int *D) {
  *N = dims[0];
  *C = tensor_format == TensorFormat::NCHW ? dims[1] : dims[dims.size() - 1];
  *H = tensor_format == TensorFormat::NCHW ? dims[2] : dims[1];
  *W = dims.size() > 3
           ? (tensor_format == TensorFormat::NCHW ? dims[3] : dims[2])
           : 1;
  *D = dims.size() > 4
           ? (tensor_format == TensorFormat::NCHW ? dims[4] : dims[3])
           : 1;
}

template <typename T>
class BatchNormKernel<platform::GPUPlace, T> : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use GPUPlace.");
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
    const std::string tensor_format_str =
        ctx.Attr<std::string>("tensor_format");
    const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str);

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
    PADDLE_ENFORCE(x_dims.size() >= 3 && x_dims.size() <= 5,
                   "The Input dim size should be between 3 and 5");
    int N, C, H, W, D;
    ExtractNCWHD(x_dims, tensor_format, &N, &C, &H, &W, &D);

    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));

    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
#if CUDNN_VERSION_MIN(7, 0, 0)
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
#else
    mode_ = CUDNN_BATCHNORM_SPATIAL;
#endif

    VLOG(1) << "Setting descriptors.";
    std::vector<int> dims;
    std::vector<int> strides;
    if (tensor_format == TensorFormat::NCHW) {
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * D * C, 1, W * D * C, D * C, C};
    }
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
        bn_param_desc_, data_desc_, mode_));

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

    math::SetConstant<platform::GPUPlace, T> functor;
    functor(ctx.device_context(), saved_mean, 0);
    functor(ctx.device_context(), saved_variance, 0);
    // FIXME(qiao) should not set zero self
    functor(ctx.device_context(), mean_out, 0);
    functor(ctx.device_context(), variance_out, 0);

    auto handle = ctx.cuda_device_context().cudnn_handle();

    // Now, depending on whether we are running test or not, we have two paths.
    if (is_test) {
      // only when test we use input to do computation.
      const auto *est_mean = ctx.Input<Tensor>("Mean");
      const auto *est_var = ctx.Input<Tensor>("Variance");
      // Run inference mode.
      PADDLE_ENFORCE_EQ(est_mean->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_var->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_mean->dims()[0], C);
      PADDLE_ENFORCE_EQ(est_var->dims()[0], C);

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardInference(
          handle,
          // Note: PERSISTENT not implemented for inference
          CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
          CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
          data_desc_, y->template mutable_data<T>(ctx.GetPlace()),
          bn_param_desc_, scale->template data<T>(), bias->template data<T>(),
          est_mean->template data<T>(), est_var->template data<T>(), epsilon));
    } else {
      // Run training mode.
      // obtain running mean and running inv var, and see if we need to
      // initialize them.
      double this_factor = 1. - momentum;

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardTraining(
          handle, mode_, CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
          data_desc_, x->template data<T>(), data_desc_,
          y->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
          scale->template data<T>(), bias->template data<T>(), this_factor,
          mean_out->template mutable_data<T>(ctx.GetPlace()),
          variance_out->template mutable_data<T>(ctx.GetPlace()), epsilon,
          saved_mean->template mutable_data<T>(ctx.GetPlace()),
          saved_variance->template mutable_data<T>(ctx.GetPlace())));
    }

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

template <typename T>
class BatchNormGradKernel<platform::GPUPlace, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use GPUPlace.");
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const std::string tensor_format_str =
        ctx.Attr<std::string>("tensor_format");
    const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str);
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");

    const auto &x_dims = x->dims();

    PADDLE_ENFORCE(x_dims.size() >= 3 && x_dims.size() <= 5,
                   "The Input dim size should be between 3 and 5");
    int N, C, H, W, D;
    ExtractNCWHD(x_dims, tensor_format, &N, &C, &H, &W, &D);

    PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL);
    PADDLE_ENFORCE_EQ(scale->dims()[0], C);

    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
#if CUDNN_VERSION_MIN(7, 0, 0)
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
#else
    mode_ = CUDNN_BATCHNORM_SPATIAL;
#endif

    std::vector<int> dims = {N, C, H, W, D};
    std::vector<int> strides = {H * W * C * D, 1, W * D * C, D * C, C};
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
        bn_param_desc_, data_desc_, mode_));

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
    d_scale->mutable_data<T>(ctx.GetPlace());
    d_bias->mutable_data<T>(ctx.GetPlace());

    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
    const void *saved_mean_data = saved_mean->template data<T>();
    const void *saved_var_data = saved_var->template data<T>();

    CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationBackward(
        ctx.cuda_device_context().cudnn_handle(), mode_,
        CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
        CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(), data_desc_,
        x->template data<T>(), data_desc_, d_y->template data<T>(), data_desc_,
        d_x->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
        scale->template data<T>(),
        d_scale->template mutable_data<T>(ctx.GetPlace()),
        d_bias->template mutable_data<T>(ctx.GetPlace()), epsilon,
        saved_mean_data, saved_var_data));

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(batch_norm,
                       ops::BatchNormKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
    batch_norm_grad,
    ops::BatchNormGradKernel<paddle::platform::GPUPlace, float>);