tensor_py.h 19.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

L
Luo Tao 已提交
17
#include <Python.h>
W
wopeizl 已提交
18 19
#include <algorithm>
#include <memory>
Q
qijun 已提交
20
#include <string>
C
chengduoZH 已提交
21 22
#include <tuple>
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
W
wopeizl 已提交
25 26
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/platform/device_context.h"
28
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
29 30
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
31

W
wopeizl 已提交
32 33
namespace py = pybind11;

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;

// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
struct npy_format_descriptor<paddle::platform::float16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
  static PYBIND11_DESCR name() { return _("float16"); }
};

}  // namespace detail
}  // namespace pybind11

63
namespace paddle {
64
namespace pybind {
65

66 67
namespace details {

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
template <typename T>
class PYBIND11_HIDDEN NumpyAllocation : public memory::Allocation {
 public:
  explicit NumpyAllocation(const py::array &arr)
      : Allocation(const_cast<void *>(arr.data()), sizeof(T) * (arr.size()),
                   paddle::platform::CPUPlace()),
        arr_(arr.ptr()) {
    PADDLE_ENFORCE_NOT_NULL(arr_, platform::errors::InvalidArgument(
                                      "The underlying PyObject pointer of "
                                      "numpy array cannot be nullptr"));
    PADDLE_ENFORCE_NE(
        arr_, Py_None,
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~NumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject *arr_;
};

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
template <typename T>
struct ValidDTypeToPyArrayChecker {
  static constexpr bool kValue = false;
};

#define DECLARE_VALID_DTYPE_TO_PY_ARRAY(type) \
  template <>                                 \
  struct ValidDTypeToPyArrayChecker<type> {   \
    static constexpr bool kValue = true;      \
  }

DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::float16);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(float);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(double);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(bool);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int8_t);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(uint8_t);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int64_t);

inline std::string TensorDTypeToPyDTypeStr(
    framework::proto::VarType::Type type) {
#define TENSOR_DTYPE_TO_PY_DTYPE(T, proto_type)                             \
  if (type == proto_type) {                                                 \
    if (std::is_same<T, platform::float16>::value) {                        \
      return "e";                                                           \
    } else {                                                                \
      constexpr auto kIsValidDType = ValidDTypeToPyArrayChecker<T>::kValue; \
      PADDLE_ENFORCE_EQ(kIsValidDType, true,                                \
                        "This type of tensor cannot be expose to Python");  \
      return py::format_descriptor<T>::format();                            \
    }                                                                       \
  }

  _ForEachDataType_(TENSOR_DTYPE_TO_PY_DTYPE);
#undef TENSOR_DTYPE_TO_PY_DTYPE
  PADDLE_THROW("Unsupported data type %d", static_cast<int>(type));
}

}  // namespace details

134
template <typename T>
135
T TensorGetElement(const framework::Tensor &self, size_t offset) {
Q
qingqing01 已提交
136 137
  PADDLE_ENFORCE_LT(offset, self.numel());
  T b = static_cast<T>(0);
138
  if (platform::is_cpu_place(self.place())) {
Q
qingqing01 已提交
139 140
    b = self.data<T>()[offset];
#ifdef PADDLE_WITH_CUDA
141
  } else {
Q
qingqing01 已提交
142 143 144 145 146
    const T *a = self.data<T>();
    auto p = boost::get<platform::CUDAPlace>(self.place());
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
#endif
147
  }
Q
qingqing01 已提交
148
  return b;
149 150 151
}

template <typename T>
152
void TensorSetElement(framework::Tensor *self, size_t offset, T elem) {
Q
qingqing01 已提交
153 154
  PADDLE_ENFORCE_LT(offset, self->numel());
  if (platform::is_cpu_place(self->place())) {
Y
Yu Yang 已提交
155
    self->mutable_data<T>(self->place())[offset] = elem;
Q
qingqing01 已提交
156 157 158 159 160 161 162
#ifdef PADDLE_WITH_CUDA
  } else {
    auto p = boost::get<platform::CUDAPlace>(self->place());
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
#endif
163
  }
164 165
}

166 167 168
template <typename T, typename P>
void SetTensorFromPyArrayT(
    framework::Tensor *self,
169
    const py::array_t<T, py::array::c_style | py::array::forcecast> &array,
170
    const P &place, bool zero_copy) {
171 172 173 174 175 176 177 178
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.push_back(static_cast<int>(array.shape()[i]));
  }
  self->Resize(framework::make_ddim(dims));

  if (paddle::platform::is_cpu_place(place)) {
179 180 181 182 183 184 185 186
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
      self->ResetHolderWithType(holder, type);
    } else {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
    }
187 188
  } else {
#ifdef PADDLE_WITH_CUDA
189
    auto dst = self->mutable_data<T>(place);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    if (paddle::platform::is_cuda_pinned_place(place)) {
      std::memcpy(dst, array.data(), array.nbytes());
    } else if (paddle::platform::is_gpu_place(place)) {
      paddle::platform::GpuMemcpySync(dst, array.data(), array.nbytes(),
                                      cudaMemcpyHostToDevice);
    } else {
      PADDLE_THROW(
          "Incompatible place type: Tensor.set() supports CPUPlace, CUDAPlace "
          "and CUDAPinnedPlace, but got %s!",
          place);
    }
#else
    PADDLE_THROW("Not supported GPU, please compile WITH_GPU option");
#endif
  }
}

template <typename P>
208
void SetTensorFromPyArray(framework::Tensor *self, const py::object &obj,
209
                          const P &place, bool zero_copy) {
210
  auto array = obj.cast<py::array>();
211
  if (py::isinstance<py::array_t<float>>(array)) {
212
    SetTensorFromPyArrayT<float, P>(self, array, place, zero_copy);
213
  } else if (py::isinstance<py::array_t<int>>(array)) {
214
    SetTensorFromPyArrayT<int, P>(self, array, place, zero_copy);
215
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
216
    SetTensorFromPyArrayT<int64_t, P>(self, array, place, zero_copy);
217
  } else if (py::isinstance<py::array_t<double>>(array)) {
218
    SetTensorFromPyArrayT<double, P>(self, array, place, zero_copy);
219
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
220
    SetTensorFromPyArrayT<int8_t, P>(self, array, place, zero_copy);
221
  } else if (py::isinstance<py::array_t<uint8_t>>(array)) {
222
    SetTensorFromPyArrayT<uint8_t, P>(self, array, place, zero_copy);
223
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
224 225
    SetTensorFromPyArrayT<paddle::platform::float16, P>(self, array, place,
                                                        zero_copy);
226 227
  } else if (py::isinstance<py::array_t<uint16_t>>(array)) {
    // TODO(cql): temporary keeping uint16, should be depracated later
228 229
    SetTensorFromPyArrayT<paddle::platform::float16, P>(self, array, place,
                                                        zero_copy);
230
  } else if (py::isinstance<py::array_t<bool>>(array)) {
231
    SetTensorFromPyArrayT<bool, P>(self, array, place, zero_copy);
232 233 234 235 236 237 238 239 240 241
  } else {
    PADDLE_THROW(
        "Incompatible data or style type: tensor.set() supports bool, float16, "
        "float32, "
        "float64, "
        "int8, int32, int64 and uint8, uint16, but got %s!",
        array.dtype());
  }
}

W
wopeizl 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
template <typename T, size_t D>
void _sliceCompute(const framework::Tensor *in, framework::Tensor *out,
                   const platform::CPUDeviceContext &ctx,
                   const std::vector<int> &axes,
                   const std::vector<int> &starts) {
  auto &eigen_place = *ctx.eigen_device();
  auto place = in->place();
  auto out_dims = out->dims();
  auto in_dims = in->dims();

  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = out_dims[i];
  }
  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *in);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out);
  out_t.device(eigen_place) = in_t.slice(offsets, extents);
}

template <typename T>
void _concatCompute(const std::vector<paddle::framework::Tensor> &ins,
                    paddle::framework::Tensor *out,
                    const platform::CPUDeviceContext &ctx, int64_t axis) {
  if (axis == 0 && ins.size() < 10) {
    size_t output_offset = 0;
    for (auto &in : ins) {
      auto in_stride = framework::stride_numel(in.dims());
      auto out_stride = framework::stride_numel(out->dims());
      paddle::operators::StridedNumelCopyWithAxis<T>(
          ctx, axis, out->data<T>() + output_offset, out_stride, in.data<T>(),
          in_stride, in_stride[axis]);
      output_offset += in_stride[axis];
    }
  } else {
    paddle::operators::math::ConcatFunctor<platform::CPUDeviceContext, T>
        concat_functor;
    concat_functor(ctx, ins, static_cast<int>(axis), out);
  }
}

void _getSliceinfo(const framework::Tensor &self, py::object obj,
                   const int64_t dim, int64_t *pstart, int64_t *pstop,
                   int64_t *pstep, int64_t *pslicelength) {
  auto &start = *pstart;
  auto &stop = *pstop;
  auto &step = *pstep;
  auto &slicelength = *pslicelength;
  const framework::DDim &srcDDim = self.dims();
  if (dim < 0 || dim >= srcDDim.size()) {
    throw py::index_error();
  }
  if (py::isinstance<py::slice>(obj)) {
    size_t lstart, lstop, lstep, lslicelength;
    py::slice s = static_cast<py::slice>(obj);
    if (!s.compute(srcDDim[dim], &lstart, &lstop, &lstep, &lslicelength)) {
      throw py::index_error();
    }
    start = static_cast<int64_t>(lstart);
    stop = static_cast<int64_t>(lstop);
    step = static_cast<int64_t>(lstep);
    slicelength = static_cast<int64_t>(lslicelength);
  } else if (py::isinstance<py::int_>(obj)) {
    start = static_cast<int64_t>(static_cast<py::int_>(obj));
    if (std::abs(start) >= srcDDim[dim]) {
      throw py::index_error();
    }
    start = (start >= 0) ? start : srcDDim[dim] - start;
    stop = start + 1;
    step = 1;
    slicelength = 1;
  } else {
    throw py::index_error();
  }
}

inline framework::Tensor *_getTensor(const framework::Tensor &self,
                                     const framework::DDim &ddim) {
  framework::Tensor *output = new framework::Tensor();
  output->Resize(ddim);
  auto place = self.place();
  if (platform::is_cpu_place(place)) {
    output->mutable_data(boost::get<platform::CPUPlace>(place), self.type());
#ifdef PADDLE_WITH_CUDA
  } else {
    if (platform::is_cuda_pinned_place(place)) {
      output->mutable_data(boost::get<platform::CUDAPinnedPlace>(place),
                           self.type());
    } else if ((platform::is_gpu_place(place))) {
      output->mutable_data(boost::get<platform::CUDAPlace>(place), self.type());
    }
#endif
  }
  return output;
}

template <typename T>
void _sliceDapper(const framework::Tensor *in, framework::Tensor *out,
                  const platform::CPUDeviceContext &ctx,
                  const std::vector<int> &axes, const std::vector<int> &starts,
                  int size) {
  switch (size) {
    case 1:
      _sliceCompute<T, 1>(in, out, ctx, axes, starts);
      break;
    case 2:
      _sliceCompute<T, 2>(in, out, ctx, axes, starts);
      break;
    case 3:
      _sliceCompute<T, 3>(in, out, ctx, axes, starts);
      break;
    case 4:
      _sliceCompute<T, 4>(in, out, ctx, axes, starts);
      break;
    case 5:
      _sliceCompute<T, 5>(in, out, ctx, axes, starts);
      break;
    case 6:
      _sliceCompute<T, 6>(in, out, ctx, axes, starts);
      break;
    case 7:
      _sliceCompute<T, 7>(in, out, ctx, axes, starts);
      break;
    case 8:
      _sliceCompute<T, 8>(in, out, ctx, axes, starts);
      break;
    case 9:
      _sliceCompute<T, 9>(in, out, ctx, axes, starts);
      break;
    default:
      PADDLE_THROW("dim size not exepected, current is %d", size);
      break;
  }
}

template <typename T>
inline framework::Tensor *_sliceWrapper(const framework::Tensor &self,
                                        const platform::CPUDeviceContext &ctx,
                                        py::object obj, int dim, int64_t start,
                                        int64_t slicelength) {
  framework::DDim dstDDim = self.dims();
  dstDDim[dim] = static_cast<int64_t>(slicelength);
  std::vector<int> axes({dim});
  std::vector<int> starts({static_cast<int>(start)});
  framework::Tensor *output = _getTensor(self, dstDDim);
  _sliceDapper<T>(&self, output, ctx, axes, starts, dstDDim.size());
  return output;
}

template <typename T>
inline framework::Tensor *_sliceAndConcat(const framework::Tensor &self,
                                          py::object obj, int dim) {
  platform::CPUDeviceContext ctx;
  int64_t start, stop, step, slicelength;
  _getSliceinfo(self, obj, dim, &start, &stop, &step, &slicelength);
  if (step == 1 || slicelength == 1) {
    return _sliceWrapper<T>(self, ctx, obj, dim, start, slicelength);
  } else {
    std::vector<framework::Tensor> ins;
    for (auto i = 0; i < slicelength; ++i, start += step) {
      ins.emplace_back(*_sliceWrapper<T>(self, ctx, obj, dim, start, 1));
    }

    // do the concat operation
    framework::DDim dstDDim = self.dims();
    dstDDim[dim] = static_cast<int64_t>(slicelength);
    framework::Tensor *output1 = _getTensor(self, dstDDim);
    _concatCompute<T>(ins, output1, ctx, dim);
    return output1;
  }
}

inline framework::Tensor *_sliceTensor(const framework::Tensor &self,
                                       py::object obj, int dim) {
  auto src_type = self.type();
  switch (src_type) {
    case framework::proto::VarType::FP16:
      return _sliceAndConcat<paddle::platform::float16>(self, obj, dim);
    case framework::proto::VarType::FP32:
      return _sliceAndConcat<float>(self, obj, dim);
    case framework::proto::VarType::FP64:
      return _sliceAndConcat<double>(self, obj, dim);
    case framework::proto::VarType::INT32:
      return _sliceAndConcat<int>(self, obj, dim);
    case framework::proto::VarType::INT64:
      return _sliceAndConcat<int64_t>(self, obj, dim);
    case framework::proto::VarType::BOOL:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::INT16:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::UINT8:
      return _sliceAndConcat<bool>(self, obj, dim);
    default:
      PADDLE_THROW("Not support type %d", src_type);
  }
}

inline framework::Tensor *_pySliceTensor(const framework::Tensor &self,
                                         py::object obj) {
  if (py::isinstance<py::tuple>(obj)) {
    py::list l = static_cast<py::list>(obj);
    std::unique_ptr<framework::Tensor> target;
    framework::Tensor *src = const_cast<framework::Tensor *>(&self);
    for (auto i = 0; i < static_cast<int>(l.size()); ++i) {
      src = _sliceTensor(*src, l[i], i);
      if (i + 1 == static_cast<int>(l.size())) {
        return src;
      } else {
        target.reset(src);
      }
    }
    return nullptr;
  } else {
    return _sliceTensor(self, obj, 0);
  }
}

inline framework::Tensor *PySliceTensor(const framework::Tensor &self,
                                        py::object obj) {
  if (platform::is_gpu_place(self.place())) {
    std::unique_ptr<framework::Tensor> holder;
    framework::Tensor src;
    framework::TensorCopySync(self, platform::CPUPlace(), &src);
    framework::Tensor *output = _pySliceTensor(src, obj);
    holder.reset(output);
    framework::Tensor *dst = _getTensor(*output, output->dims());
    framework::TensorCopySync(*output, self.place(), dst);
    return dst;
  } else {
    return _pySliceTensor(self, obj);
  }
}

489 490
inline py::array TensorToPyArray(const framework::Tensor &tensor,
                                 bool need_deep_copy = false) {
Q
qingqing01 已提交
491 492 493
  if (!tensor.IsInitialized()) {
    return py::array();
  }
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
  bool is_gpu_tensor = platform::is_gpu_place(tensor.place());
  const auto &tensor_dims = tensor.dims();
  auto tensor_dtype = tensor.type();
  size_t sizeof_dtype = framework::SizeOfType(tensor_dtype);

  std::vector<size_t> py_dims(tensor_dims.size());
  std::vector<size_t> py_strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = (size_t)tensor_dims[i];
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }

  const void *tensor_buf_ptr = tensor.data<void>();

  std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(tensor.type());

  if (!is_gpu_tensor) {
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    if (!need_deep_copy) {
      return py::array(py::buffer_info(
          const_cast<void *>(tensor_buf_ptr), sizeof_dtype, py_dtype_str,
          static_cast<size_t>(tensor.dims().size()), py_dims, py_strides));
    } else {
      py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
      PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                        platform::errors::InvalidArgument(
                            "PyArray must be writable, otherwise memory leak "
                            "or double free would occur"));
      PADDLE_ENFORCE_EQ(py_arr.owndata(), true,
                        platform::errors::InvalidArgument(
                            "PyArray must own data, otherwise memory leak "
                            "or double free would occur"));
      platform::CPUPlace place;
      size_t copy_bytes = sizeof_dtype * numel;
      paddle::memory::Copy(place, py_arr.mutable_data(), place, tensor_buf_ptr,
                           copy_bytes);
      return py_arr;
    }
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
  }

#ifdef PADDLE_WITH_CUDA
  py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
  PADDLE_ENFORCE(py_arr.writeable() && py_arr.owndata(),
                 "PyArray must be writable and own data, otherwise memory leak "
                 "or double free would occur");

  size_t copy_bytes = sizeof_dtype * numel;
  paddle::platform::GpuMemcpySync(py_arr.mutable_data(), tensor_buf_ptr,
                                  copy_bytes, cudaMemcpyDeviceToHost);
  return py_arr;
#else
  PADDLE_THROW("CUDAPlace is not supported when not compiled with CUDA");
#endif
}

551 552
}  // namespace pybind
}  // namespace paddle