lstmp_op.h 20.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include "paddle/operators/activation_op.h"
17 18 19 20 21
#include "paddle/operators/math/detail/activation_functions.h"
#include "paddle/operators/math/lstm_compute.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/sequence2batch.h"

22 23 24
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

25 26 27 28 29 30
namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

31 32 33 34
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

35 36 37 38 39 40 41 42 43 44 45 46
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
                             const framework::Tensor& src, const size_t* index,
                             framework::Tensor* dst, bool indexed_src) {
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
  row_shuffle(ctx, src, index, *dst, indexed_src);
}

template <typename DeviceContext, typename T>
class LSTMPKernel : public framework::OpKernel<T> {
 public:
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
  template <typename Device, typename X, typename Y>
  void ActCompute(const math::detail::ActivationType act_type, const Device& d,
                  X x, Y y) const {
    if (act_type == math::detail::ActivationType::kIdentity)
      y.device(d) = x;
    else if (act_type == math::detail::ActivationType::kSigmoid)
      SigmoidFunctor<T>()(d, x, y);
    else if (act_type == math::detail::ActivationType::kTanh)
      TanhFunctor<T>()(d, x, y);
    else if (act_type == math::detail::ActivationType::kReLU)
      ReluFunctor<T>()(d, x, y);
    else
      PADDLE_THROW("unsupported activation type");
  }

62 63 64 65 66 67 68
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* weight = ctx.Input<Tensor>("Weight");
    auto* proj_weight = ctx.Input<Tensor>("ProjWeight");
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* hidden_t0 = ctx.Input<Tensor>("H0");
69
    auto* ordered_proj0 = ctx.Output<Tensor>("OrderedP0");
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    auto* cell_t0 = ctx.Input<Tensor>("C0");

    auto* batch_gate = ctx.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(ctx.GetPlace());
    auto* proj_out = ctx.Output<LoDTensor>("Projection");
    proj_out->mutable_data<T>(ctx.GetPlace());
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
    cell_out->mutable_data<T>(ctx.GetPlace());

    bool is_reverse = ctx.Attr<bool>("is_reverse");
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& device_ctx = ctx.template device_context<DeviceContext>();
    to_batch(device_ctx, *input, *batch_gate, true, is_reverse);

    auto in_dims = input->dims();
    int frame_size = static_cast<int>(in_dims[1] / 4);
    framework::DDim dims({in_dims[0], frame_size});
    framework::DDim proj_dims({in_dims[0], proj_weight->dims()[1]});

    if (bias) {
      Tensor b = *bias;
      b.Resize({bias->numel(), 1});
      Tensor gate_bias = b.Slice(0, 4 * frame_size);
      math::RowwiseAdd<DeviceContext, T> add_bias;
      add_bias(device_ctx, *batch_gate, gate_bias, batch_gate);
    }

    math::LstmMetaValue<T> lstmp_value;
    if (bias && ctx.Attr<bool>("use_peepholes")) {
      T* bias_data = const_cast<T*>(bias->data<T>());
      // the code style in LstmpMetaValue will be updated later.

      lstmp_value.check_ig = bias_data + 4 * frame_size;
      lstmp_value.check_fg = lstmp_value.check_ig + frame_size;
      lstmp_value.check_og = lstmp_value.check_fg + frame_size;
    } else {
      lstmp_value.check_ig = nullptr;
      lstmp_value.check_fg = nullptr;
      lstmp_value.check_og = nullptr;
    }
    lstmp_value.prev_state_value = nullptr;
    Tensor ordered_c0;
    const size_t* order = batch_gate->lod()[2].data();
    if (cell_t0) {
      // Since the batch computing for LSTMP reorders the input sequence
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<DeviceContext, T>(device_ctx, *cell_t0, order,
                                         &ordered_c0, true);
      lstmp_value.prev_state_value = ordered_c0.data<T>();
    }

    // Use the local variable as here.
123
    LoDTensor batch_proj, batch_cell;
124
    auto* batch_cell_pre_act = ctx.Output<LoDTensor>("BatchCellPreAct");
125 126 127
    batch_cell_pre_act->mutable_data<T>(dims, ctx.GetPlace());
    auto* batch_hidden = ctx.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(dims, ctx.GetPlace());    // T x D
128 129 130 131 132 133 134 135 136 137 138
    batch_proj.mutable_data<T>(proj_dims, ctx.GetPlace());  // T x P
    batch_cell.mutable_data<T>(dims, ctx.GetPlace());       // T x D

    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));
139 140
    auto share_cell_act = ctx.Attr<bool>("share_cell_act");
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
141 142 143 144 145 146

    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

      Tensor gate_t = batch_gate->Slice(bstart, bend);
147
      Tensor hidden_t = batch_hidden->Slice(bstart, bend);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
      Tensor proj_t = batch_proj.Slice(bstart, bend);
      Tensor cell_t = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend);

      int cur_batch_size = bend - bstart;

      if (n > 0) {
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_proj_t = batch_proj.Slice(pre_h_start, pre_h_end);
        math::matmul<DeviceContext, T>(device_ctx, pre_proj_t, false, *weight,
                                       false, static_cast<T>(1.0), &gate_t,
                                       static_cast<T>(1.0));
      } else if (hidden_t0) {
        // If n == 0 and there is no initialized hidden state, that is to say
        // the H0 is zeros, the calculation W_h * H0 will be skiped.
        // If n == 0 and there is initialized hidden state, calculate W_h * H0.

        // Since the batch computing for LSTMP reorders the input sequence
        // according to their length. The initialized hidden state also needs
        // to reorder.
169 170 171

        Tensor ordered_h0;
        ordered_proj0->mutable_data<T>(ctx.GetPlace());
172 173 174 175
        ReorderInitState<DeviceContext, T>(device_ctx, *hidden_t0, order,
                                           &ordered_h0, true);
        math::matmul<DeviceContext, T>(device_ctx, ordered_h0, false,
                                       *proj_weight, false, static_cast<T>(1.0),
176 177 178 179 180 181
                                       ordered_proj0, static_cast<T>(0.0));
        if (share_cell_act) {
          auto proj0_dev = EigenMatrix<T>::From(*ordered_proj0);
          ActCompute(cell_act, place, proj0_dev, proj0_dev);
        }
        math::matmul<DeviceContext, T>(device_ctx, *ordered_proj0, false,
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
                                       *weight, false, static_cast<T>(1.0),
                                       &gate_t, static_cast<T>(1.0));
      }

      lstmp_value.gate_value = gate_t.data<T>();
      lstmp_value.output_value = hidden_t.data<T>();
      lstmp_value.state_value = cell_t.data<T>();
      lstmp_value.state_active_value = cell_pre_act_t.data<T>();
      math::LstmUnitFunctor<DeviceContext, T>::compute(
          device_ctx, lstmp_value, frame_size, cur_batch_size, gate_act,
          cell_act, cand_act);
      lstmp_value.prev_state_value = lstmp_value.state_value;
      math::matmul<DeviceContext, T>(device_ctx, hidden_t, false, *proj_weight,
                                     false, static_cast<T>(1.0), &proj_t,
                                     static_cast<T>(0.0));
197 198 199 200
      if (share_cell_act) {
        auto proj_t_dev = EigenMatrix<T>::From(proj_t);
        ActCompute(cell_act, place, proj_t_dev, proj_t_dev);
      }
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
    batch_proj.set_lod(batch_gate->lod());
    // restore the output hidden in LoDTensor from the batch hidden
    to_seq(device_ctx, batch_proj, *proj_out);

    batch_cell.set_lod(batch_gate->lod());
    // restore the output cell state in LoDTensor from the batch cell
    to_seq(device_ctx, batch_cell, *cell_out);
  }
};

template <typename DeviceContext, typename T>
class LSTMPGradKernel : public framework::OpKernel<T> {
 public:
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  template <typename Device, typename X, typename Y, typename DX, typename DY>
  void ActGradCompute(const math::detail::ActivationType act_type,
                      const Device& d, X x, Y y, DX dx, DY dy) const {
    // x is dummy and won't be used even in Relu(use y instead)
    if (act_type == math::detail::ActivationType::kIdentity)
      dx.device(d) = dy;
    else if (act_type == math::detail::ActivationType::kSigmoid)
      SigmoidGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == math::detail::ActivationType::kTanh)
      TanhGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == math::detail::ActivationType::kReLU)
      ReluGradFunctor<T>()(d, x, y, dy, dx);
    else
      PADDLE_THROW("unsupported activation type");
  }

233 234 235
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* weight = ctx.Input<Tensor>("Weight");
236
    auto* proj_weight = ctx.Input<Tensor>("ProjWeight");
237 238 239 240 241 242 243
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* proj_out = ctx.Input<LoDTensor>("Projection");
    auto* cell_out = ctx.Input<LoDTensor>("Cell");

    auto* batch_gate = ctx.Input<LoDTensor>("BatchGate");
    auto* batch_cell_pre_act = ctx.Input<LoDTensor>("BatchCellPreAct");
244
    auto* batch_hidden = ctx.Input<LoDTensor>("BatchHidden");
245

246 247
    auto* projection_g =
        ctx.Input<LoDTensor>(framework::GradVarName("Projection"));
248 249 250

    auto* in_g = ctx.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* weight_g = ctx.Output<Tensor>(framework::GradVarName("Weight"));
251 252
    auto* proj_weight_g =
        ctx.Output<Tensor>(framework::GradVarName("ProjWeight"));
253 254 255
    auto* bias_g = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto* h0 = ctx.Input<Tensor>("H0");
256
    auto* ordered_proj0 = ctx.Input<Tensor>("OrderedP0");
257 258 259 260 261 262 263 264 265 266 267
    auto* c0 = ctx.Input<Tensor>("C0");

    auto* h0_g = ctx.Output<Tensor>(framework::GradVarName("H0"));
    auto* c0_g = ctx.Output<Tensor>(framework::GradVarName("C0"));

    auto& device_ctx = ctx.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> zero;
    if (weight_g) {
      weight_g->mutable_data<T>(ctx.GetPlace());
      zero(device_ctx, weight_g, static_cast<T>(0.0));
    }
268 269 270 271
    if (proj_weight_g) {
      proj_weight_g->mutable_data<T>(ctx.GetPlace());
      zero(device_ctx, proj_weight_g, static_cast<T>(0.0));
    }
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    // ordered_h0/c0 is the reordered hidden/cell initialization.
    // ordered_h0_g/c0_g is the reordered gradient of hidden/cell
    // initialization.
    Tensor ordered_h0, ordered_c0, ordered_h0_g, ordered_c0_g;
    const size_t* order = batch_gate->lod()[2].data();
    if (c0) {
      ReorderInitState<DeviceContext, T>(device_ctx, *c0, order, &ordered_c0,
                                         true);
    }
    if (c0 && c0_g) {
      ordered_c0_g.mutable_data<T>(c0_g->dims(), ctx.GetPlace());
    }

    auto in_dims = input->dims();
287 288
    auto out_dims = cell_out->dims();
    framework::DDim proj_dims({in_dims[0], proj_weight->dims()[1]});
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    int frame_size = static_cast<int>(in_dims[1] / 4);
    PADDLE_ENFORCE_EQ(frame_size, out_dims[1]);

    math::LstmMetaValue<T> lstmp_value;
    if (bias && ctx.Attr<bool>("use_peepholes")) {
      T* bias_data = const_cast<T*>(bias->data<T>());
      lstmp_value.check_ig = bias_data + 4 * frame_size;
      lstmp_value.check_fg = lstmp_value.check_ig + frame_size;
      lstmp_value.check_og = lstmp_value.check_fg + frame_size;
    } else {
      lstmp_value.check_ig = nullptr;
      lstmp_value.check_fg = nullptr;
      lstmp_value.check_og = nullptr;
    }

    math::LstmMetaGrad<T> lstmp_grad;

    if (bias && bias_g) {
      bias_g->mutable_data<T>(ctx.GetPlace());
      zero(device_ctx, bias_g, static_cast<T>(0.0));
    }
    if (bias && bias_g && ctx.Attr<bool>("use_peepholes")) {
      T* bias_g_data = bias_g->data<T>();
      lstmp_grad.check_ig_grad = bias_g_data + 4 * frame_size;
      lstmp_grad.check_fg_grad = lstmp_grad.check_ig_grad + frame_size;
      lstmp_grad.check_og_grad = lstmp_grad.check_fg_grad + frame_size;
    } else {
      lstmp_grad.check_ig_grad = nullptr;
      lstmp_grad.check_fg_grad = nullptr;
      lstmp_grad.check_og_grad = nullptr;
    }

    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;

    auto ToBatch = [&batch_gate, &to_batch](
        const DeviceContext& ctx, const framework::LoDTensor& src,
        const framework::DDim& dims, framework::LoDTensor& dst) {
      dst.mutable_data<T>(dims, ctx.GetPlace());
      dst.set_lod(batch_gate->lod());
      to_batch(ctx, src, dst, false);
    };

331 332 333 334 335
    LoDTensor batch_hidden_g, batch_proj, batch_proj_g, batch_cell;
    batch_hidden_g.mutable_data<T>(out_dims, ctx.GetPlace());
    ToBatch(device_ctx, *proj_out, proj_dims, batch_proj);        // T x P
    ToBatch(device_ctx, *projection_g, proj_dims, batch_proj_g);  // T x P
    ToBatch(device_ctx, *cell_out, out_dims, batch_cell);         // T x D
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

    LoDTensor batch_cell_g, batch_gate_g;
    batch_cell_g.mutable_data<T>(out_dims, ctx.GetPlace());
    // TODO(qingqing) support the case output cell has gradient.
    // to_batch(device_ctx, *cell_g, batch_cell_g, false);
    zero(device_ctx, &batch_cell_g, static_cast<T>(0.0));
    batch_gate_g.mutable_data<T>(batch_gate->dims(), ctx.GetPlace());
    batch_gate_g.set_lod(batch_gate->lod());

    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));
351 352
    auto share_cell_act = ctx.Attr<bool>("share_cell_act");
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
353 354 355 356 357 358 359

    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

360 361 362 363 364 365 366 367 368 369 370 371 372
      Tensor cur_proj = batch_proj.Slice(bstart, bend);
      Tensor proj_g = batch_proj_g.Slice(bstart, bend);
      if (share_cell_act) {
        auto cur_proj_dev = EigenMatrix<T>::From(cur_proj);
        auto proj_g_dev = EigenMatrix<T>::From(proj_g);
        ActGradCompute(cell_act, place, cur_proj_dev, cur_proj_dev, proj_g_dev,
                       proj_g_dev);
      }
      Tensor out_g = batch_hidden_g.Slice(bstart, bend);
      math::matmul<DeviceContext, T>(device_ctx, proj_g, false, *proj_weight,
                                     true, static_cast<T>(1.0), &out_g,
                                     static_cast<T>(0.0));

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
      Tensor gate = batch_gate->Slice(bstart, bend);
      Tensor cell = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act = batch_cell_pre_act->Slice(bstart, bend);
      lstmp_value.gate_value = gate.data<T>();
      lstmp_value.state_value = cell.data<T>();
      lstmp_value.state_active_value = cell_pre_act.data<T>();

      Tensor gate_g = batch_gate_g.Slice(bstart, bend);
      Tensor cell_g = batch_cell_g.Slice(bstart, bend);
      lstmp_grad.state_grad = cell_g.data<T>();
      lstmp_grad.gate_grad = gate_g.data<T>();
      lstmp_grad.output_grad = out_g.data<T>();

      if (n > 0) {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor cell_pre = batch_cell.Slice(bstart_pre, bstart);
        Tensor cell_pre_g = batch_cell_g.Slice(bstart_pre, bstart);
        lstmp_value.prev_state_value = cell_pre.data<T>();
        lstmp_grad.prev_state_grad = cell_pre_g.data<T>();
      } else {
        lstmp_value.prev_state_value = c0 ? ordered_c0.data<T>() : nullptr;
        lstmp_grad.prev_state_grad = c0_g ? ordered_c0_g.data<T>() : nullptr;
      }

      int cur_batch_size = bend - bstart;
      math::LstmUnitGradFunctor<DeviceContext, T>::compute(
          device_ctx, lstmp_value, lstmp_grad, frame_size, cur_batch_size,
          gate_act, cell_act, cand_act);

      if (n > 0) {
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_proj_g = batch_proj_g.Slice(pre_h_start, pre_h_end);
        math::matmul<DeviceContext, T>(device_ctx, gate_g, false, *weight, true,
                                       static_cast<T>(1.0), &pre_proj_g,
                                       static_cast<T>(1.0));
        if (weight_g) {
          /* backward weight */
          auto pre_proj = batch_proj.Slice(pre_h_start, pre_h_end);
          math::matmul<DeviceContext, T>(device_ctx, pre_proj, true, gate_g,
                                         false, static_cast<T>(1.0), weight_g,
                                         static_cast<T>(1.0));
        }
416 417 418 419 420 421 422
        if (proj_weight_g) {
          /* backward proj weigh */
          Tensor hidden_t = batch_hidden->Slice(bstart, bend);
          math::matmul<DeviceContext, T>(device_ctx, hidden_t, true, proj_g,
                                         false, static_cast<T>(1.0),
                                         proj_weight_g, static_cast<T>(1.0));
        }
423 424 425 426
      } else {
        if (h0 && weight_g) {
          ReorderInitState<DeviceContext, T>(device_ctx, *h0, order,
                                             &ordered_h0, true);
427 428 429 430 431
          if (weight_g) {
            math::matmul<DeviceContext, T>(device_ctx, *ordered_proj0, true,
                                           gate_g, false, static_cast<T>(1.0),
                                           weight_g, static_cast<T>(1.0));
          }
432
        }
433
        if (h0 && (h0_g || proj_weight_g)) {
434
          ordered_h0_g.mutable_data<T>(h0_g->dims(), ctx.GetPlace());
435 436 437
          Tensor proj0_g;
          proj0_g.Resize({in_dims[0], proj_weight->dims()[1]});
          proj0_g.mutable_data<T>(ctx.GetPlace());
438
          math::matmul<DeviceContext, T>(device_ctx, gate_g, false, *weight,
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
                                         true, static_cast<T>(1.0), &proj0_g,
                                         static_cast<T>(0.0));
          if (share_cell_act) {
            auto proj0_dev = EigenMatrix<T>::From(*ordered_proj0);
            auto proj0_g_dev = EigenMatrix<T>::From(proj0_g);
            ActGradCompute(cell_act, place, proj0_dev, proj0_dev, proj0_g_dev,
                           proj0_g_dev);
          }
          // Tensor proj0_g = proj_g.Slice(bstart, bend);
          if (h0_g) {
            math::matmul<DeviceContext, T>(
                device_ctx, proj0_g, false, *proj_weight, true,
                static_cast<T>(1.0), &ordered_h0_g, static_cast<T>(0.0));
          }
          if (proj_weight_g) {
            math::matmul<DeviceContext, T>(device_ctx, ordered_h0, true,
                                           proj0_g, false, static_cast<T>(1.0),
                                           proj_weight_g, static_cast<T>(1.0));
          }
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        }
      }
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
    if (in_g) {
      /* backward data */
      in_g->mutable_data<T>(ctx.GetPlace());
      to_seq(device_ctx, batch_gate_g, *in_g);
    }
    if (bias && bias_g) {
      /* backward bias */
      Tensor b_g = *bias_g;
      b_g.Resize({bias_g->numel(), 1});
      Tensor gate_bias_g = b_g.Slice(0, 4 * frame_size);
      math::ColwiseSum<DeviceContext, T> col_sum;
      col_sum(device_ctx, batch_gate_g, &gate_bias_g);
    }

    if (h0 && h0_g) {
      ReorderInitState<DeviceContext, T>(device_ctx, ordered_h0_g, order, h0_g,
                                         false);
    }
    if (c0 && c0_g) {
      ReorderInitState<DeviceContext, T>(device_ctx, ordered_c0_g, order, c0_g,
                                         false);
    }
  }
};

}  // namespace operators
}  // namespace paddle