multi_trainer.cc 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
20
#include "paddle/fluid/operators/distributed/distributed.h"
21 22 23 24

namespace paddle {
namespace framework {

D
dongdaxiang 已提交
25
void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
26
                              Dataset* dataset) {
27
  thread_num_ = trainer_desc.thread_num();
28 29 30 31 32
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
33
  SetDataset(dataset);
34
  // get filelist from trainer_desc here
J
jiaqi 已提交
35
  const std::vector<paddle::framework::DataFeed*> readers =
D
dongdaxiang 已提交
36
      dataset->GetReaders();
37
  VLOG(3) << "readers num: " << readers.size();
38 39 40 41
  // change thread num to readers num
  thread_num_ = readers.size();
  VLOG(3) << "worker thread num: " << thread_num_;
  workers_.resize(thread_num_);
42 43 44 45 46 47 48 49

#ifdef PADDLE_WITH_DISTRIBUTE
  if (trainer_desc.thread_barrier()) {
    operators::distributed::Communicator::GetInstance()->BarrierTriggerReset(
        thread_num_);
  }
#endif

50 51 52
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
D
dongdaxiang 已提交
53
    workers_[i]->Initialize(trainer_desc);
54
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
55
    workers_[i]->SetDataFeed(readers[i]);
56
  }
D
dongdaxiang 已提交
57 58

  // set debug here
59
  SetDebug(trainer_desc.debug());
60 61 62 63 64 65 66
}

// call only after all resources are set in current trainer
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetPlace(place);
67
    workers_[i]->SetReaderPlace(place);
68 69 70 71 72 73
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
}

74 75 76 77
Scope* MultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

78
void MultiTrainer::Run() {
79
  VLOG(3) << "Going to run";
80
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
81 82 83 84 85 86 87
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
88 89 90 91 92 93
  }
  for (auto& th : threads_) {
    th.join();
  }
}

D
Dong Daxiang 已提交
94 95
void MultiTrainer::Finalize() { root_scope_->DropKids(); }

96 97
}  // end namespace framework
}  // end namespace paddle