sparse_api_gen.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import argparse
import re

20
from api_gen import ForwardAPI
21 22


23
class SparseAPI(ForwardAPI):
24

25 26 27 28
    def __init__(self, api_item_yaml):
        super(SparseAPI, self).__init__(api_item_yaml)

    def gene_api_declaration(self):
29 30 31 32
        return f"""
// {", ".join(self.outputs['names'])}
{super(SparseAPI, self).gene_api_declaration()}
"""
33 34

    def gene_output(self,
35 36 37
                    out_dtype_list,
                    out_tensor_type_list=None,
                    code_indent='',
38
                    inplace_flag=False):
39
        kernel_output = []
40 41
        output_names = []
        output_create = ""
42
        return_type = self.get_return_type_with_intermediate(inplace_flag)
43 44 45 46 47
        output_type_map = {
            'dense': 'TensorType::DENSE_TENSOR',
            'sparse_coo': 'TensorType::SPARSE_COO',
            'sparse_csr': 'TensorType::SPARSE_CSR'
        }
48

49
        if len(out_dtype_list) == 1:
50
            kernel_output.append('kernel_out')
51 52 53 54 55
            output_names.append('kernel_out')
            inplace_assign = " = " + self.inplace_map[self.outputs['names'][
                0]] if inplace_flag and self.inplace_map is not None and self.outputs[
                    'names'][0] in self.inplace_map else ""
            output_create = f"""
56
    {return_type} api_output{inplace_assign};
57
    auto* kernel_out = SetSparseKernelOutput(&api_output, {output_type_map[out_dtype_list[0]]});"""
58

59
        elif len(out_dtype_list) > 1:
60
            output_create = f"""
61
    {return_type} api_output;"""
62 63 64

            if inplace_flag:
                output_create = f"""
65
    {return_type} api_output{{"""
66 67 68 69 70 71 72 73

                for out_name in self.outputs['names']:
                    if out_name in self.inplace_map:
                        output_create = output_create + self.inplace_map[
                            out_name] + ', '
                    else:
                        output_create += 'Tensor(), '
                output_create = output_create[:-2] + '};'
74

75
            for i in range(len(out_dtype_list)):
76
                kernel_output.append(f'kernel_out_{i}')
77 78
                output_names.append(f'kernel_out_{i}')
                output_create = output_create + f"""
79
    auto* kernel_out_{i} = SetSparseKernelOutput(&std::get<{i}>(api_output), {output_type_map[out_dtype_list[i]]});"""
80 81 82 83 84 85 86 87 88 89

        else:
            raise ValueError(
                "{} : Output error: the output should not be empty.".format(
                    self.api))

        return kernel_output, output_names, output_create

    def gen_sparse_kernel_context(self, kernel_output_names):
        input_trans_map = {
90 91 92 93
            'const Tensor&':
            'const phi::TenseBase&',
            'const std::vector<Tensor>&':
            'const std::vector<phi::TenseBase>&',
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            'const paddle::optional<Tensor>&':
            'paddle::optional<const phi::TenseBase&>'
        }
        out_trans_map = {
            'Tensor': 'phi::TenseBase*',
            'std::vector<Tensor>': 'std::vector<phi::TenseBase*>'
        }
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        kernel_context_code = ""
        for param in kernel_param:
            if param in input_names:
                if param in self.optional_vars:
113 114
                    kernel_context_code = kernel_context_code + f"""
    kernel_context.EmplaceBackInput({param} ? {param}->impl().get() : nullptr);"""
115 116
                else:
                    kernel_context_code = kernel_context_code + f"""
117
    kernel_context.EmplaceBackInput({param}.impl().get());"""
118 119 120 121

                continue
            if param in attr_names:
                # set attr for kernel_context
122 123
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    param = 'phi::IntArray(' + param + ')'
124 125 126 127 128 129 130
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
                    param = 'phi::Scalar(' + param + ')'
            elif isinstance(param, bool):
                param = str(param).lower()
            else:
                param + str(param) + ", "
            kernel_context_code = kernel_context_code + f"""
131
    kernel_context.EmplaceBackAttr({param});"""
132 133 134

        for out_name in kernel_output_names:
            kernel_context_code = kernel_context_code + f"""
135
    kernel_context.EmplaceBackOutput({out_name});"""
136 137 138

        return kernel_context_code

139
    def gen_sparse_kernel_code(self, kernel_name, inplace_flag=False):
140
        _, kernel_output_names, output_create = self.gene_output(
141
            self.kernel['dispatch'][kernel_name][1], None, '', inplace_flag)
142 143 144

        kernel_context_code = self.gen_sparse_kernel_context(
            kernel_output_names)
145 146
        return_code = "" if len(
            self.gene_return_code()) == 0 else "  " + self.gene_return_code()
147
        return f"""
148
    VLOG(6) << "{self.api} api sparse kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
149
    auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
150
        "{kernel_name}", {{kernel_backend, kernel_layout, kernel_data_type}});
151
    const auto& phi_kernel = kernel_result.kernel;
152
    VLOG(6) << "{self.api} api sparse kernel: " << phi_kernel;
153

154
    auto* dev_ctx = GetDeviceContextByBackend(kernel_result.has_fallback_cpu ? Backend::CPU : kernel_backend);
155
    auto kernel_context = phi::KernelContext(dev_ctx);
156 157
{output_create}
{kernel_context_code}
158 159 160 161 162
    phi_kernel(&kernel_context);
  {return_code}"""

    def get_condition_code(self, kernel_name):
        assert self.kernel['dispatch'][kernel_name], \
C
Chen Weihang 已提交
163
                f"{self.api} api: the tensor type of inputs and outputs for kernel isn't set, see also 'kernel:func' of 'conv3d' in sparse_ops.yaml."
164 165 166 167 168 169 170 171
        input_types = self.kernel['dispatch'][kernel_name][0]
        sparse_type_map = {
            'sparse_coo': 'DataLayout::SPARSE_COO',
            'sparse_csr': 'DataLayout::SPARSE_CSR'
        }
        condition_list = []
        for i, in_type in enumerate(input_types):
            if in_type == "dense":
172 173 174 175 176 177 178 179
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || phi::DenseTensor::classof({self.inputs['names'][i]}->impl().get()))"
                    )
                else:
                    condition_list.append(
                        f"phi::DenseTensor::classof({self.inputs['names'][i]}.impl().get())"
                    )
180 181 182 183 184 185 186 187 188 189 190 191
            else:
                condition_list.append(
                    f"{self.inputs['names'][i]}.layout() == {sparse_type_map[in_type]}"
                )
        return " && ".join(condition_list)

    def gene_dispatch_code(self, kernel_name, inplace_flag=False):
        return f"""
  if ({self.get_condition_code(kernel_name)}) {{
{self.gen_sparse_kernel_code(kernel_name, inplace_flag)}
  }}
"""
192 193

    def gene_base_api_code(self, inplace_flag=False):
194 195 196
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'
197 198
        kernel_dispatch_code = f"{self.gene_kernel_select()}\n"
        for kernel_name in self.kernel['func']:
199 200
            kernel_dispatch_code += self.gene_dispatch_code(
                kernel_name, inplace_flag)
201

202
        return f"""
203
PADDLE_API {self.get_return_type()} {api_func_name}({self.get_define_args()}) {{
204 205 206
{kernel_dispatch_code}
  PADDLE_THROW(phi::errors::Unimplemented(
          "The kernel of ({self.api}) for input tensors is unimplemented, please check the type of input tensors."));
207 208 209 210 211 212 213 214 215 216
}}
"""


def header_include():
    return """
#include <tuple>

#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/common/scalar.h"
217
#include "paddle/phi/common/int_array.h"
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
#include "paddle/utils/optional.h"
"""


def source_include(header_file_path):
    return f"""
#include "{header_file_path}"
#include <memory>

#include "glog/logging.h"

#include "paddle/phi/api/lib/api_gen_utils.h"
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/sparse_api_custom_impl.h"
#include "paddle/phi/core/kernel_registry.h"
"""


def api_namespace():
    return ("""
namespace paddle {
namespace experimental {
namespace sparse {

""", """

}  // namespace sparse
}  // namespace experimental
}  // namespace paddle
""")


def generate_api(api_yaml_path, header_file_path, source_file_path):

    with open(api_yaml_path, 'r') as f:
        apis = yaml.load(f, Loader=yaml.FullLoader)
    header_file = open(header_file_path, 'w')
    source_file = open(source_file_path, 'w')

    namespace = api_namespace()

    header_file.write("#pragma once\n")
    header_file.write(header_include())
    header_file.write(namespace[0])

    include_header_file = "paddle/phi/api/include/sparse_api.h"
    source_file.write(source_include(include_header_file))
    source_file.write(namespace[0])

    for api in apis:
        sparse_api = SparseAPI(api)
270 271
        if sparse_api.is_dygraph_api:
            sparse_api.is_dygraph_api = False
272 273 274 275 276 277 278 279 280 281 282 283 284
        header_file.write(sparse_api.gene_api_declaration())
        source_file.write(sparse_api.gene_api_code())

    header_file.write(namespace[1])
    source_file.write(namespace[1])

    header_file.close()
    source_file.close()


def main():
    parser = argparse.ArgumentParser(
        description='Generate PaddlePaddle C++ Sparse API files')
285 286
    parser.add_argument('--api_yaml_path',
                        help='path to sparse api yaml file',
C
Chen Weihang 已提交
287
                        default='paddle/phi/api/yaml/sparse_ops.yaml')
288 289 290 291 292 293 294 295

    parser.add_argument('--api_header_path',
                        help='output of generated api header code file',
                        default='paddle/phi/api/include/sparse_api.h')

    parser.add_argument('--api_source_path',
                        help='output of generated api source code file',
                        default='paddle/phi/api/lib/sparse_api.cc')
296 297 298 299 300 301 302 303 304 305 306 307

    options = parser.parse_args()

    api_yaml_path = options.api_yaml_path
    header_file_path = options.api_header_path
    source_file_path = options.api_source_path

    generate_api(api_yaml_path, header_file_path, source_file_path)


if __name__ == '__main__':
    main()