distribute_transpiler.py 87.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50 51 52

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
53
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
54 55
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
56
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
57
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
58 59 60 61 62 63 64 65 66
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
67 68


T
typhoonzero 已提交
69 70 71 72 73 74
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
75

T
typhoonzero 已提交
76 77
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
78 79


80 81 82 83
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
84
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
85
    """
86 87 88 89 90 91
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
92
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
93 94 95

    Args:
        var_list (list): List of variables.
96 97
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
98 99
        min_block_size (int): Minimum splitted block size.
    Returns:
100
        blocks (list[(varname, block_id, current_block_size)]): A list
101
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
102 103 104
    """
    blocks = []
    for var in var_list:
105
        split_count = slice_count
T
typhoonzero 已提交
106 107 108 109
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
110
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
120
        # update split_count after aligning
T
typhoonzero 已提交
121
        split_count = int(math.ceil(var_numel / float(block_size)))
122
        for block_id in range(split_count):
T
typhoonzero 已提交
123 124 125 126 127 128 129
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
130 131
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
146
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
147 148
          want to change it, please be sure you have read the slice_variable function.

G
gongweibao 已提交
149 150 151 152 153
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
154
    enable_dc_asgd = False
W
Wu Yi 已提交
155 156
    # supported modes: pserver, nccl2
    mode = "pserver"
157
    print_log = False
W
Wu Yi 已提交
158
    wait_port = True
Q
Qiao Longfei 已提交
159 160
    # split the send recv var in runtime
    runtime_split_send_recv = False
G
gongweibao 已提交
161 162


Y
gen rst  
yi.wu 已提交
163
class DistributeTranspiler(object):
Y
yi.wu 已提交
164 165 166 167
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
168
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
169

W
Wu Yi 已提交
170 171 172 173 174 175 176 177 178
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
179 180 181 182

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
            role = os.getenv("PADDLE_TRAINING_ROLE")
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
196
                                                                pserver_program)
T
Tink_Y 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
            exe = fluid.ParallelExecutor(
                use_cuda,
                loss_name=loss_var.name,
                num_trainers=len(trainers.split(",)),
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
211
    """
Y
Yancey1989 已提交
212

G
gongweibao 已提交
213 214 215 216 217 218 219 220 221
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

222 223 224
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
225 226 227
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
228 229 230 231
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
232 233
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
234 235 236 237 238 239
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
240 241
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
258
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
259
        sparse_update_ops = []
260
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
261 262
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
263
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
264 265 266
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
267
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
268
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
269 270 271
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
272
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
273
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
274 275 276 277 278 279 280
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
281

282 283 284 285 286
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
287
                  sync_mode=True,
W
Wu Yi 已提交
288 289
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
290
        """
Y
yi.wu 已提交
291 292 293 294 295 296 297
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
298 299
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
300 301
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
302 303 304
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
305
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
306 307
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
308 309 310
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
311 312 313
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
314 315
        if startup_program is None:
            startup_program = default_startup_program()
316
        self.origin_program = program
W
Wu Yi 已提交
317 318
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
319

W
Wu Yi 已提交
320 321
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
322
            self.origin_program._trainers_endpoints = trainers.split(",")
W
Wu Yi 已提交
323 324 325 326
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
327 328
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
329 330
            return

331 332 333 334 335
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
336
        self.vars_overview = VarsDistributed()
337 338
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
339
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
340 341
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
342
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
343
        self.grad_name_to_param_name = dict()
344 345
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
346
            self.grad_name_to_param_name[grad_var.name] = param_var.name
347

Q
Qiao Longfei 已提交
348
        # get all sparse update ops
Q
Qiao Longfei 已提交
349
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
350
            self.origin_program)
Q
Qiao Longfei 已提交
351
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
352 353
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
354 355 356
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
357
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
358 359 360
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

361
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
362
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
363
        self._init_splited_vars()
364

G
gongweibao 已提交
365
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
366
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
367
        send_vars = []
368 369 370 371 372 373

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
374
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
375

G
gongweibao 已提交
376
        if not self.config.slice_var_up:
377 378
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
379

380
        self.grad_name_to_send_dummy_out = dict()
381
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
382
            eplist = ps_dispatcher.dispatch(splited_vars)
383

G
gongweibao 已提交
384
            if not self.config.slice_var_up:
385 386
                assert (len(splited_vars) == 1)

387
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
388
            if len(splited_vars) == 1:
389
                splited_grad_varname = splited_vars[0].name
390 391
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
392 393
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
394
                        grad_varname]
Q
Qiao Longfei 已提交
395 396 397 398
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
399
            elif len(splited_vars) > 1:
400
                orig_var = program.global_block().vars[splited_grad_varname]
401 402
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
403 404 405 406
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
407 408
            else:
                AssertionError("Can not insert the send op by original "
409
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
410

W
Wu Yi 已提交
411 412
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
413
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
414

Q
Qiao Longfei 已提交
415 416 417 418 419 420 421 422 423 424 425
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
426 427 428 429
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
430
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
431
                index=index + 1,
432
                type="send",
Q
Qiao Longfei 已提交
433
                inputs={"X": send_input_vars},
434
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
435 436
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
437 438
                    "sections": sections,
                    "send_varnames": send_varnames,
439
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
440 441 442 443
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
444
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
445
                })
Y
update  
Yancey1989 已提交
446 447
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
448 449

        if self.sync_mode:
W
Wu Yi 已提交
450 451
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
452 453 454 455
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
456
            input_deps = list(self.grad_name_to_send_dummy_out.values())
457

Y
Yancey1989 已提交
458 459
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
460
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
461
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
462 463
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
464 465
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
466
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
467
                })
Y
Yancey1989 已提交
468

G
gongweibao 已提交
469
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
470
        recv_vars = []
Y
update  
Yancey1989 已提交
471
        for _, var in enumerate(send_vars):
472
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
473
        ps_dispatcher.reset()
Y
Yancey1989 已提交
474 475
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
476
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
477 478
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
479

480 481 482 483
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
484
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
485
        all_recv_outputs = []
486
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
487
            eps = []
Q
Qiao Longfei 已提交
488
            table_names = []
Y
Yancey1989 已提交
489 490 491
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
492
                table_names.append(var.name)
W
Wu Yi 已提交
493 494 495 496
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
497
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
498
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
499

W
Wu Yi 已提交
500 501 502 503 504 505 506 507 508
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
509
            if param_varname in self.sparse_param_to_height_sections:
510 511 512 513 514 515

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
516 517
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
518 519
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
520
            else:
Q
Qiao Longfei 已提交
521 522 523
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
524
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
525
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
526
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
527

Q
Qiao Longfei 已提交
528 529 530 531 532 533
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
534
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
535 536 537 538 539 540
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
541

Q
qiaolongfei 已提交
542
        if self.sync_mode:
W
Wu Yi 已提交
543
            # form a WAW dependency
Q
qiaolongfei 已提交
544 545 546
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
547
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
548 549
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
550
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
551 552
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
553

554
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
555 556
            if len(splited_var) <= 1:
                continue
557
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
558
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
559 560 561 562 563 564 565 566 567
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
568

G
gongweibao 已提交
569 570
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

571
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
572 573
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
574
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
575

576 577 578
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
579
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
580 581 582 583 584 585
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
586
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
587
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
588

T
typhoonzero 已提交
589
        lr_ops = self._get_lr_ops()
590
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
591 592
        delete_ops(self.origin_program.global_block(), lr_ops)

593 594
        # delete table init op
        if self.has_distributed_lookup_table:
595 596 597
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
598 599
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
600 601 602 603 604
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
605
            table_init_op = table_param_init_op[0]
606 607 608 609 610 611
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
612

613
        self.origin_program.__str__()
G
gongweibao 已提交
614

W
Wu Yi 已提交
615 616 617
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

618
        return self.origin_program
T
typhoonzero 已提交
619

W
Wu Yi 已提交
620
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
621 622 623 624
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
625
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
626
            eplist (list): A list of strings indicating
G
gongweibao 已提交
627 628 629 630

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
631
        startup_program = self.startup_program
G
gongweibao 已提交
632 633 634 635

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
636
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
657
                inputs={"X": []},
G
gongweibao 已提交
658 659 660
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
661
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
662 663 664
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
665 666
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
667 668 669
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
670
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
671 672
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
673
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
674 675 676
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
677
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
678
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
679 680
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
681
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
682
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
683 684 685 686 687 688 689 690 691 692
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
693 694 695 696 697 698 699 700
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
701 702
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
703
        Get parameter server side program.
704

Y
yi.wu 已提交
705 706
        Args:
            endpoint (str): current parameter server endpoint.
707

Y
yi.wu 已提交
708 709
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
710
        """
Y
yi.wu 已提交
711 712 713 714
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
715 716 717
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
718 719
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
720
        pserver_program.random_seed = self.origin_program.random_seed
721 722
        pserver_program._copy_dist_param_info_from(self.origin_program)

723
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
724 725 726 727 728 729 730 731
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
732 733 734 735 736
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
737 738 739 740 741 742 743 744 745
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
746
            if self.sync_mode and self.trainer_num > 1:
747
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
748 749 750 751 752 753 754 755 756
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
757

Q
qiaolongfei 已提交
758
        # step 3
759
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
760 761 762
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
763
        # step 3.2
T
typhoonzero 已提交
764 765 766 767
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
768 769
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
770
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
771
        # step 3.3
W
Wu Yi 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
790
        # Iterate through the ops, and if an op and the optimize ops
791
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
792
        # append it into the sub program.
T
typhoonzero 已提交
793 794 795

        global_ops = []

796 797 798
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
799 800
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
801
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
802
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
803 804
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
805
            elif op not in lr_ops:
Q
Qiyang Min 已提交
806
                self._append_pserver_non_opt_ops(block, op)
807

Y
Yancey1989 已提交
808
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
809 810 811 812 813 814 815 816
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
817
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
818 819 820

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
821
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
822 823

            # clone ops
Y
Yancey1989 已提交
824 825
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
826
                # clone sub_block of op
Y
Yancey1989 已提交
827
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
828 829

            # reset the block of op
W
Wu Yi 已提交
830
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
831

832
        # append lr decay ops to the child block if exists
833
        lr_ops = self._get_lr_ops()
834 835
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
836
        if len(lr_ops) > 0:
W
Wu Yi 已提交
837
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
838
                pserver_program.num_blocks - 1)
839
            optimize_blocks.append(lr_decay_block)
840
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
841
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
842
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
843 844
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
845

T
typhoonzero 已提交
846
        # append op to the current block
Q
qiaolongfei 已提交
847
        grad_to_block_id = []
Q
qiaolongfei 已提交
848
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
849
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
850
            per_opt_block = pserver_program._create_block(pre_block_idx)
851
            optimize_blocks.append(per_opt_block)
852
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
853
            # append grad merging ops before clip and weight decay
854 855
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
856
            for _, op in enumerate(self.optimize_ops):
857
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
858
                # merged_var should be the input var name of L2Decay
859 860 861
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
862 863 864
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
865 866 867 868 869 870
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
871
                            op not in global_ops:
872 873 874 875 876
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
877

878
        # dedup grad to ids list
W
Wu Yi 已提交
879
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
880
        # append global ops
881
        if global_ops:
W
Wu Yi 已提交
882
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
883
                pserver_program.num_blocks - 1)
884
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
885
            for glb_op in global_ops:
X
Xi Chen 已提交
886
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
887
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
888

889
        # process distributed lookup_table
Q
qiaolongfei 已提交
890
        prefetch_var_name_to_block_id = []
891 892
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
893
            table_opt_block = self._create_table_optimize_block(
894
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
895
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
896
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
897
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
898 899
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
900

T
tangwei12 已提交
901
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
902 903
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
904

905
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
906 907
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
908 909 910 911 912 913
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
914
        attrs = {
915
            "optimize_blocks": optimize_blocks,
916 917 918
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
919
            "grad_to_block_id": grad_to_block_id,
920
            "sparse_grad_to_param": sparse_grad_to_param,
921
        }
T
tangwei12 已提交
922 923

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
924
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
925 926
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
927

T
tangwei12 已提交
928 929 930 931
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
932 933 934 935 936
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
937
            attrs=attrs)
938

W
Wu Yi 已提交
939
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
940 941
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
942 943
        return pserver_program

W
Wu Yi 已提交
944 945 946 947 948 949
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
950

W
Wu Yi 已提交
951 952 953 954
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
955 956
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
957 958
        return pserver_prog, pserver_startup

959 960
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
961
                            pserver_program=None,
962
                            startup_program=None):
T
typhoonzero 已提交
963
        """
W
Wu Yi 已提交
964 965
        **Deprecated**

T
typhoonzero 已提交
966 967 968
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
969 970 971

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
972 973
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
974
                when initalizing
975

Y
yi.wu 已提交
976 977
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
978 979
        """
        s_prog = Program()
W
Wu Yi 已提交
980
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
981
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
982 983 984 985 986 987 988 989 990 991 992
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
993
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
994
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
995
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
996 997 998 999
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1000
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1001 1002
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1013 1014

            if op_on_pserver:
1015 1016 1017
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1018 1019 1020
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
1021
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1022 1023 1024 1025
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1026
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1036

T
typhoonzero 已提交
1037 1038
        return s_prog

1039 1040
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1041
        block_suffix = "block"
1042 1043 1044
        block_idx = 0
        offset = 0
        is_slice = False
1045

1046
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1047

1048 1049
        if not block_name:
            return is_slice, block_idx, offset
1050

1051 1052 1053 1054
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1055 1056 1057 1058 1059
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1123

Y
yi.wu 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1163
    def _init_splited_vars(self):
Y
yi.wu 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1187
        if self.config.slice_var_up:
Y
yi.wu 已提交
1188 1189
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1190 1191 1192
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1193
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1194 1195
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1196 1197 1198
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1199 1200 1201 1202
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1203 1204
        assert (len(grad_blocks) == len(param_blocks))

1205
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1206 1207
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1224
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1225 1226 1227 1228
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1229
        # dict(grad_splited_var -> param_splited_var)
1230
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1231 1232 1233
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1234
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1235
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1236 1237

        # create mapping of endpoint -> split var to create pserver side program
1238
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1248
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1249 1250
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1251
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1252
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1253 1254
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1255 1256
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1257 1258 1259 1260 1261 1262

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1263 1264
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1265
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1266 1267 1268
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1269 1270
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1271 1272
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1273 1274 1275
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1276
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1277
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1278 1279

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1280
                    self.all_out_emb_vars.append(out_var)
1281 1282

                    # delete lookup_table_op
1283
                    delete_ops(program.global_block(), [op])
1284 1285 1286
                    # break for loop
                    break

S
seiriosPlus 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1333
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1334
        # 2. add split_ids_op and send_op to send gradient to pservers
1335

1336 1337
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1338
        table_grad_name = grad_var_name(self.table_name)
1339 1340 1341 1342
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1343
                program.global_block()._insert_op(
1344 1345 1346 1347 1348
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1349 1350
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1351
                program.global_block()._insert_op(
1352
                    index=op_index + 2,
1353
                    type="send",
1354
                    inputs={'X': self.trainer_side_table_grad_list},
1355 1356 1357 1358 1359
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1360
                    attrs={
1361
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1362
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1363
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1364 1365 1366 1367 1368
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1369
                    })
1370 1371 1372 1373 1374 1375
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1376
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1402
        return prefetch_var_name_to_block_id
1403 1404

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1405
                                     pre_block_idx, grad_to_block_id):
1406
        # STEP: create table optimize block
1407
        table_opt_block = pserver_program._create_block(pre_block_idx)
1408
        # create table param and grad var in pserver program
1409 1410
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1411 1412
            op for op in self.optimize_ops if 'Param' in op.input_names and
            op.input("Param")[0] == self.table_name
1413 1414
        ][0]

Y
Yancey1989 已提交
1415 1416
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1417

T
tangwei12 已提交
1418
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1419 1420
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1421 1422 1423
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1424 1425
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1426
            shape=table_shape,
Y
Yancey1989 已提交
1427 1428 1429
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1430

1431 1432
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1433
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1434
            self.origin_program.global_block().vars[grad_var_name(
1435
                self.table_name)])
1436

1437 1438 1439
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1440

1441 1442 1443
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1444
            pserver_side_table_grad_list = [
1445 1446 1447 1448 1449 1450 1451 1452 1453
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1454
            # append sum op for pserver_side_table_grad_list
1455 1456
            table_opt_block.append_op(
                type="sum",
1457
                inputs={"X": pserver_side_table_grad_list},
1458 1459
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1460 1461
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1462
            origin_grad_name = grad_var.name
1463 1464
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1465 1466
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1467
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1468
            grad_var = pserver_program.global_block()._rename_var(
1469
                origin_grad_name, splited_grad_name)
1470 1471 1472 1473 1474 1475 1476

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1477
        # only support sgd now
1478 1479 1480
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1481
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1482

1483 1484 1485
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1486 1487
        return table_opt_block

T
tangwei12 已提交
1488 1489 1490 1491 1492
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1493
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1494
            name="kLookupTablePath",
T
tangwei12 已提交
1495 1496
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1497

W
Wu Yi 已提交
1498
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1499
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1500 1501 1502 1503
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1504
            attrs={'file_path': "none"})
T
tangwei12 已提交
1505 1506 1507

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1508 1509 1510 1511 1512
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1513
        Create vars for each split.
T
typhoonzero 已提交
1514 1515
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1516 1517 1518 1519
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1520
        Returns:
1521
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1522
                from original var name to each var split.
T
typhoonzero 已提交
1523
        """
1524 1525

        # varname->[(block_id, current_block_size)]
1526
        block_map = collections.OrderedDict()
1527

1528
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1529 1530
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1531
            if varname not in block_map:
T
typhoonzero 已提交
1532
                block_map[varname] = []
1533
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1534

M
minqiyang 已提交
1535
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1536
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1537
            if len(splited) == 1:
1538
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1539
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1540
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1541
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1542 1543 1544 1545 1546
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1547
                continue
T
typhoonzero 已提交
1548
            var_mapping[varname] = []
T
typhoonzero 已提交
1549 1550 1551 1552
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1553

T
typhoonzero 已提交
1554
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1555
                size = block[1]
M
minqiyang 已提交
1556
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1557 1558 1559
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1560
                new_var_name = ""
1561
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1562
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1563
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1564 1565
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1566
                                   (varname, i)
T
typhoonzero 已提交
1567
                var = program.global_block().create_var(
T
typhoonzero 已提交
1568 1569
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1570
                    dtype=orig_var.dtype,
1571
                    type=orig_var.type,
T
typhoonzero 已提交
1572
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1573
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1574
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1575
        return var_mapping
T
done  
typhoonzero 已提交
1576

1577
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1578 1579 1580 1581 1582 1583
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1584
            persistable=persistable)
T
done  
typhoonzero 已提交
1585

Q
Qiao Longfei 已提交
1586 1587 1588 1589 1590 1591 1592
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1593
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1594 1595
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1596
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1597
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1598
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1599 1600
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1601
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1602 1603 1604 1605
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1606 1607 1608 1609
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1610
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1611
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1612 1613 1614 1615
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1616
                attrs={
Q
Qiao Longfei 已提交
1617
                    "sections": height_sections,
1618 1619
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1620 1621 1622
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1623

T
typhoonzero 已提交
1624 1625 1626 1627
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1628
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1641
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1642 1643
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1644 1645
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1646
                return param_shape
1647 1648 1649
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1650 1651 1652
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1653 1654
        elif op_type == "sgd":
            pass
1655 1656 1657 1658
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1659 1660
        return orig_shape

1661 1662
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1663
        orig_var_name = ""
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1674
        else:
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1697
            return None
1698 1699 1700 1701
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1702
        else:
1703
            merged_var_name = orig_varname
1704 1705

        merged_var = pserver_block.vars[merged_var_name]
1706 1707 1708
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1709
            for i in range(self.trainer_num):
1710
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1711
                                   (merged_var_name, i)
1712 1713 1714 1715
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1716 1717
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1718 1719 1720 1721 1722
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1723
        return merged_var
T
typhoonzero 已提交
1724

W
Wu Yi 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1787
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1788 1789
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
1790
        program = optimize_block.program
T
typhoonzero 已提交
1791
        pserver_block = program.global_block()
1792
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1803 1804 1805 1806
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1807
        for key in opt_op.input_names:
T
typhoonzero 已提交
1808
            if key == "Grad":
W
Wu Yi 已提交
1809 1810 1811
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
1822
            elif key == "Param":
W
Wu Yi 已提交
1823
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1824 1825
                if not param_block:
                    return
T
typhoonzero 已提交
1826
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1827
                    name=param_block.name,
T
typhoonzero 已提交
1828
                    persistable=True,
T
typhoonzero 已提交
1829 1830 1831
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1832
            elif key == "LearningRate":
1833
                # learning rate variable has already be created by non-optimize op,
1834
                # don't create it once again.
1835
                lr_varname = opt_op.input(key)[0]
1836
                if lr_varname in pserver_block.vars:
1837 1838 1839 1840 1841 1842 1843 1844 1845
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1846

T
typhoonzero 已提交
1847
        for key in opt_op.input_names:
1848
            new_shape = None
W
Wu Yi 已提交
1849
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1850
                continue
1851
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1852
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1853
            # update accumulator variable shape
1854 1855
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1856
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1857 1858 1859 1860 1861
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1862

1863
        # change output's ParamOut variable
1864 1865
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1866
        outputs["ParamOut"] = new_inputs["Param"]
1867
        optimize_block.append_op(
T
typhoonzero 已提交
1868 1869
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1870
            outputs=outputs,
G
gongweibao 已提交
1871
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1872

1873 1874 1875 1876 1877 1878
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1890
        grad_block = None
M
minqiyang 已提交
1891
        for _, g in six.iteritems(var_dict):
1892
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1893
                # skip per trainer vars
1894
                if g.name.find(".trainer_") == -1:
1895
                    # only param or grads have splited blocks
1896 1897
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
1898 1899
                        grad_block = g
                        break
1900 1901
        return grad_block

Q
Qiyang Min 已提交
1902 1903 1904
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1905
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1906 1907 1908 1909
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1910
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1911 1912 1913

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1914
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1915 1916 1917 1918
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1919
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1920

Y
Yancey1989 已提交
1921
        return block.append_op(
G
gongweibao 已提交
1922
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1923 1924

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1925
        program = optimize_block.program
1926
        # Append the ops for parameters that do not need to be optimized/updated
1927 1928
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1929
        for key, varlist in six.iteritems(inputs):
1930 1931
            if not isinstance(varlist, list):
                varlist = [varlist]
1932 1933 1934
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1935
                # for inputs/outputs
1936
                grad_block = self._get_pserver_grad_param_var(
1937 1938
                    var, program.global_block().vars)
                if grad_block:
1939
                    varlist[i] = grad_block
1940
                elif var.name not in program.global_block().vars:
1941 1942 1943 1944 1945
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1946

1947 1948
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1949
        for key, varlist in six.iteritems(outputs):
1950 1951
            if not isinstance(varlist, list):
                varlist = [varlist]
1952 1953 1954
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1955 1956
                    var, program.global_block().vars)
                if grad_block:
1957
                    varlist[i] = grad_block
1958
                elif var.name not in program.global_block().vars:
1959 1960 1961 1962 1963
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1964

Y
Yancey1989 已提交
1965
        return optimize_block.append_op(
T
typhoonzero 已提交
1966
            type=opt_op.type,
T
typhoonzero 已提交
1967 1968
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1969
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1970

1971 1972 1973 1974
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1975
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1976
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1977 1978 1979 1980 1981 1982
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1983 1984
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1985 1986 1987 1988 1989 1990
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1991
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1992
        if "Param" in op.input_names and \
T
tangwei12 已提交
1993
                "LearningRate" in op.input_names:
1994 1995 1996 1997 1998 1999 2000
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2001
        if op.input("Param")[0] in param_names:
2002 2003 2004
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2005
                param = op.input("Param")[0]
T
typhoonzero 已提交
2006
                if same_or_split_var(n, param) and n != param:
2007 2008 2009
                    return True
            return False

T
typhoonzero 已提交
2010
    def _get_input_map_from_op(self, varmap, op):
2011
        """Returns a dict from op input name to the vars in varmap."""
2012
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2024
        """Returns a dict from op output name to the vars in varmap."""
2025
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2035 2036

    def _get_lr_ops(self):
2037 2038 2039
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2040 2041 2042 2043
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2044 2045 2046 2047 2048
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2049 2050 2051 2052
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2053
            if self._is_optimizer_op(op):
2054 2055 2056 2057
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2058
        block = self.origin_program.global_block()
2059 2060 2061 2062 2063
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2064

2065 2066 2067 2068 2069
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2070
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2071 2072 2073 2074 2075 2076
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2077 2078
                    # we only need to append op for once
                    break
2079
        return lr_ops
Y
Yancey1989 已提交
2080

W
Wu Yi 已提交
2081 2082 2083 2084 2085
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2086 2087
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2088 2089 2090
            return True
        return False

Y
Yancey1989 已提交
2091
    def _get_optimize_pass(self):
2092
        """
2093
        Get optimizer operators, parameters and gradients from origin_program
2094 2095
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2096
            params_grads (dict): parameter->gradient.
2097
        """
Y
Yancey1989 已提交
2098 2099 2100
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2101 2102
        # tmp set to dedup
        optimize_params = set()
2103
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2104
        for op in block.ops:
W
Wu Yi 已提交
2105
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2106
                opt_ops.append(op)
2107 2108 2109 2110 2111 2112
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2113 2114
                        params_grads.append([
                            origin_var_dict[param_name],
2115
                            origin_var_dict[grad_name]
2116
                        ])
Y
Yancey1989 已提交
2117 2118 2119
            else:
                pass
        return opt_ops, params_grads