assign_op.cc 4.6 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/framework/data_type.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/var_type.h"

namespace paddle {
namespace operators {
class AssignFunctor {
 public:
  AssignFunctor(framework::Variable *out,
                const platform::DeviceContext &dev_ctx)
      : out_(out), dev_ctx_(dev_ctx) {}

  void operator()(const framework::LoDTensor &lod_tensor) const {
    auto &out_tensor = *out_->GetMutable<framework::LoDTensor>();
    copy_tensor(lod_tensor, &out_tensor);
  }

  void operator()(const framework::LoDTensorArray &array) const {
    auto &out_array = *out_->GetMutable<framework::LoDTensorArray>();
    out_array.resize(array.size());
    for (size_t i = 0; i < array.size(); ++i) {
      copy_tensor(array[i], &out_array[i]);
    }
  }

  void operator()(const framework::SelectedRows &rows) const {
    framework::SelectedRows &out_rows =
        *out_->GetMutable<framework::SelectedRows>();
    out_rows.set_rows(rows.rows());
    out_rows.set_height(rows.height());
    auto &t = rows.value();
D
dzhwinter 已提交
46 47
    auto *m = out_rows.mutable_value();
    framework::CopyFrom(t, t.place(), dev_ctx_, m);
Y
Yu Yang 已提交
48 49 50 51 52 53 54 55 56 57 58
  }

  template <typename T>
  void operator()(const T &v) const {
    PADDLE_THROW("Not support type for assign op %s", typeid(T).name());
  }

 private:
  void copy_tensor(const framework::LoDTensor &lod_tensor,
                   framework::LoDTensor *out) const {
    auto &out_tensor = *out;
D
dzhwinter 已提交
59
    CopyFrom(lod_tensor, lod_tensor.place(), dev_ctx_, &out_tensor);
Y
Yu Yang 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    out_tensor.set_lod(lod_tensor.lod());
  }

  framework::Variable *out_;
  const platform::DeviceContext &dev_ctx_;
};

class AssignOp : public framework::OperatorBase {
 public:
  AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto *x = scope.FindVar(Input("X"));
    if (x == nullptr) {
      return;
    }
    auto *out = scope.FindVar(Output("Out"));
    PADDLE_ENFORCE(
        out != nullptr,
        "The Output(Out) should not be null if the Input(X) is set.");
    framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
  }
};

class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
89
  AssignOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
             "(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
             "could be LoDTensor, SelectedRows or LoDTensorArray.")
        .AsDispensable();
    AddOutput("Out",
              "(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
              "is the same as input X.");
    AddComment(R"DOC(Assign Operator

Out = X,  when type in [LoDTensor/SelectedRows/LoDTensorArray]
raise error if the type is not listed above.
)DOC");
  }
};

class AssignInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    if (context->HasInput("X")) {
      auto type = context->GetInputsVarType("X")[0];
111 112
      if (type == framework::proto::VarDesc_VarType_SELECTED_ROWS ||
          type == framework::proto::VarDesc_VarType_LOD_TENSOR) {
Y
Yu Yang 已提交
113 114 115 116 117 118 119 120 121 122 123
        context->SetOutputDim("Out", context->GetInputDim("X"));
      }
    }
  }
};

class AssignGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
124 125
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op = new framework::OpDesc();
Y
Yu Yang 已提交
126 127 128
    op->SetType("assign");
    op->SetInput("X", OutputGrad("Out"));
    op->SetOutput("Out", InputGrad("X"));
Y
Yu Yang 已提交
129
    return std::unique_ptr<framework::OpDesc>(op);
Y
Yu Yang 已提交
130 131 132 133 134 135 136 137 138
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(assign, ops::AssignOp, ops::AssignGradMaker,
                  ops::AssignInferShape, ops::AssignOpProtoMaker);