elementwise_op.h 21.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <algorithm>  // for max
L
liuwei1031 已提交
18
#include <memory>
19
#include <string>
L
liuwei1031 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/operator.h"
27
#include "paddle/fluid/operators/common_infer_shape_functions.h"
28
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
C
chengduo 已提交
29

30 31 32
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
33 34 35 36 37 38 39 40 41

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
42 43

  void InferShape(framework::InferShapeContext *ctx) const override {
44 45 46 47 48 49 50 51 52 53 54
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ElementwiseOp");

    PADDLE_ENFORCE_EQ(
        ctx->GetInputsVarType("Y").front(),
        framework::proto::VarType::LOD_TENSOR,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the "
            "received is %s [%s].",
            ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front()));
C
chengduo 已提交
55 56

    if (ctx->GetInputsVarType("X").front() ==
57
        framework::proto::VarType::SELECTED_ROWS) {
58 59
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y").size(), 1u,
60 61 62 63 64
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the size of Y should be 1. "
              "But reveived the size of Y = %s.",
              ctx->GetInputDim("Y").size()));
65 66
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y")[0], 1,
67 68 69 70 71
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the first dimension of Y should be 1. "
              "But reveived the first dimension of Y = %s.",
              ctx->GetInputDim("Y")[0]));
72 73
    } else if (ctx->GetInputsVarType("X").front() !=
               framework::proto::VarType::LOD_TENSOR) {
74 75 76 77
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Input X's type[%s] is not supported by elementwise_op. Please set "
          "its type to LOD_TENSOR.",
          ctx->GetInputsVarType("X").front()));
C
chengduo 已提交
78
    }
79

80 81 82 83 84 85 86 87
    if (ctx->GetInputDim("X") == ctx->GetInputDim("Y")) {
      ctx->ShareDim("X", /*->*/ "Out");
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      auto x_dims = ctx->GetInputDim("X");
      auto y_dims = ctx->GetInputDim("Y");
      int max_dim = std::max(x_dims.size(), y_dims.size());
      int axis = ctx->Attrs().Get<int>("axis");
88 89 90 91 92 93 94 95
      if (x_dims.size() == y_dims.size()) {
        PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0), true,
                          platform::errors::InvalidArgument(
                              "axis should be -1 or 0 while the dimension of "
                              "tensor X (%s) is equal to the dimension of "
                              "tensor Y (%s), but received axis: %s",
                              x_dims.size(), y_dims.size(), axis));
      }
96 97 98 99 100 101 102
      PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim), true,
                        platform::errors::InvalidArgument(
                            "The axis range must be [%s, %s), but axis is %s. "
                            "Please set the axis again.",
                            -1 * max_dim, max_dim, axis));
      axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                       : axis);
103 104 105 106 107 108 109 110 111 112
      std::vector<int> x_dims_array(max_dim);
      std::vector<int> y_dims_array(max_dim);
      std::vector<int> out_dims_array(max_dim);
      GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                             y_dims_array.data(), out_dims_array.data(),
                             max_dim, axis);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array));
      // to do
      ctx->ShareLoD("X", /*->*/ "Out");
    }
G
gongweibao 已提交
113
  }
114 115

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
116
      const framework::ExecutionContext &ctx) const override {
117 118
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
119 120

#ifdef PADDLE_WITH_MKLDNN
121
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
122 123 124 125 126 127 128
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
129 130 131

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
132
      const framework::OpKernelType &expected_kernel_type) const override {
133 134 135 136 137 138 139 140 141
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
G
gongweibao 已提交
142 143
};

C
chengduo 已提交
144 145 146
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
147
  std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
C
chengduo 已提交
148
      const override {
149 150
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
151 152 153
  }
};

G
gongweibao 已提交
154 155
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
156
  void Make() final {
157 158 159 160
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
161
    AddAttr<int>("axis",
162 163 164 165
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
166
        .SetDefault(-1);
167
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
168 169
        .SetDefault(false)
        .AsExtra();
170
    AddAttr<std::string>("x_data_format", "This parameter is no longer used.")
171 172
        .SetDefault("")
        .AsExtra();
173
    AddAttr<std::string>("y_data_format", "This parameter is no longer used.")
174 175
        .SetDefault("")
        .AsExtra();
176 177 178 179
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
180 181
        .SetDefault(false)
        .AsExtra();
182 183 184 185
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
186 187
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
188
    /* int8 parameters */
189 190
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
191 192
        .SetDefault(1.0f)
        .AsExtra();
193 194
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
195 196
        .SetDefault(1.0f)
        .AsExtra();
197 198
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
199 200
        .SetDefault(1.0f)
        .AsExtra();
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
229 230 231

The equation is:

Y
Yu Yang 已提交
232
$$%s$$
K
kexinzhao 已提交
233

234
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
235
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
236 237

There are two cases for this operator:
238

L
Luo Tao 已提交
239 240
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
241 242

For case 2:
243

244 245
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
246
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
247
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
248
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
249

L
Luo Tao 已提交
250
For example:
251

G
gongweibao 已提交
252
  .. code-block:: text
G
gongweibao 已提交
253

254 255
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
256
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
257 258
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
259
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
260

Y
Yu Yang 已提交
261
)DOC",
262
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
263 264 265 266 267 268 269 270
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
271
  void InferShape(framework::InferShapeContext *ctx) const override {
272
    auto out_grad_name = framework::GradVarName("Out");
273 274 275
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
                   "ElementwiseOpGrad");
Q
Qiao Longfei 已提交
276 277 278
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
279 280
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
281
    }
Q
Qiao Longfei 已提交
282
    if (ctx->HasOutput(y_grad_name)) {
283 284
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
285 286
    }
  }
287 288

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
289
      const framework::ExecutionContext &ctx) const override {
290 291
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
292 293

#ifdef PADDLE_WITH_MKLDNN
294
    // If broadcasting is needed, use native implementation
295
    auto CanMKLDNNElementwiseGradBeUsed = [&]() {
296 297 298 299
      auto dx_dims = ctx.Input<Tensor>("X")->dims();
      auto dy_dims = ctx.Input<Tensor>("Y")->dims();
      // No broadcast or broadcasting of data on inner dims is supported
      return (dx_dims[dx_dims.size() - 1] == dy_dims[dy_dims.size() - 1]);
300 301
    };

302
    if (this->CanMKLDNNBeUsed(ctx, input_data_type) &&
303
        CanMKLDNNElementwiseGradBeUsed()) {
304 305 306 307 308 309 310
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
G
gongweibao 已提交
324
};
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
350
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
351 352

#ifdef PADDLE_WITH_MKLDNN
353
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
354 355 356 357 358 359 360
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
391 392
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
393 394
      OP_INOUT_CHECK(ctx.HasInput("DDY"), "Input", "DDY",
                     "ElementwiseOpDoubleGradWithoutDXDY");
395
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDY");
396
    } else if (ctx.HasInput("DDY") == false) {
397 398
      OP_INOUT_CHECK(ctx.HasInput("DDX"), "Input", "DDX",
                     "ElementwiseOpDoubleGradWithoutDXDY");
399
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
400
    } else {
401 402
      input_data_type =
          OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "DDX", "DDY");
403
    }
404 405

#ifdef PADDLE_WITH_MKLDNN
406
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
407 408 409 410 411 412 413
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
414 415 416 417 418 419 420 421 422 423 424 425 426

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
427 428
};

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
class ElementwiseOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("D_DDX")) {
      ctx->ShareDim("DDX", "D_DDX");
      ctx->ShareLoD("DDX", "D_DDX");
    }
    if (ctx->HasOutput("D_DDY")) {
      ctx->ShareDim("DDY", "D_DDY");
      ctx->ShareLoD("DDY", "D_DDY");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::proto::VarType::Type input_data_type;
448
    input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "D_DDOut");
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
};

474 475 476
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
477 478
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
479 480
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
481
      auto &dout =
482 483 484 485 486 487
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

488 489
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplaceInferer,
490 491
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
492 493
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplaceInferer,
                           {"DDX", "DDOut"});
D
dzhwinter 已提交
494

495 496 497
DECLARE_INPLACE_OP_INFERER(ElementwiseTripleGradOpInplaceInferer,
                           {"D_DDOut", "D_DDX"});

498 499 500
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseGradNoBufVarsInferer, "X", "Y");
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseDoubleGradNoBufVarsInferer, "Y",
                                    "DOut");
501 502
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseTripleGradNoBufVarsInferer,
                                    "DDX", "DDY");
S
sneaxiy 已提交
503

G
gongweibao 已提交
504 505
}  // namespace operators
}  // namespace paddle
H
hong 已提交
506 507 508 509 510 511 512 513
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)              \
  template <typename T>                                                 \
  class kernel_type##GradMaker                                          \
      : public paddle::framework::SingleGradOpMaker<T> {                \
   public:                                                              \
    using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker; \
                                                                        \
   protected:                                                           \
514
    void Apply(::paddle::framework::GradOpPtr<T> op) const override {   \
H
hong 已提交
515
      op->SetType(#kernel_type "_grad");                                \
516
      op->SetInput("X", this->Input("X"));                              \
H
hong 已提交
517 518 519 520 521 522 523 524 525
      op->SetInput("Y", this->Input("Y"));                              \
      op->SetInput(::paddle::framework::GradVarName("Out"),             \
                   this->OutputGrad("Out"));                            \
      op->SetAttrMap(this->Attrs());                                    \
      op->SetOutput(::paddle::framework::GradVarName("X"),              \
                    this->InputGrad("X"));                              \
      op->SetOutput(::paddle::framework::GradVarName("Y"),              \
                    this->InputGrad("Y"));                              \
    }                                                                   \
526 527
  }

528 529 530 531
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
H
hong 已提交
532 533
                    op_type##GradMaker<::paddle::framework::OpDesc>,    \
                    op_type##GradMaker<::paddle::imperative::OpBase>,   \
534
                    ::paddle::operators::ElementwiseOpInplaceInferer);